cho x,y.z>0 và \(x+\frac{1}{y}=y+\frac{1}{z}=z+\frac{1}{x}\). tính P=xyz
cho xyz khác 0 và \(\frac{x-y-z}{x}=\frac{-x+y-z}{y}=\frac{-x-y+z}{z}\) tính \(A=(1+\frac{y}{x})(1+\frac{z}{y})(1+\frac{x}{z})\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-y-z}{x}=\frac{-x+y-z}{y}=\frac{-x-y+z}{z}=\frac{x-y-z-x+y-z-x-y+z}{x+y+z}\)\(=\frac{-\left(x+y+z\right)}{x+y+z}\)
Nếu \(x+y+z=0\)thì \(\hept{\begin{cases}x+y=-z\\y+z=-x\\z+x=-y\end{cases}}\)
\(A=\left(1+\frac{y}{x}\right)\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)\)
\(=\frac{x+y}{x}.\frac{y+z}{y}.\frac{z+x}{z}\)
\(=\frac{-z}{x}.\frac{-x}{y}.\frac{-y}{z}=-1\)
Nếu \(x+y+z\ne0\)thì \(\frac{x-y-z}{x}=\frac{-x+y-z}{y}=\frac{-x-y+z}{z}=-1\)
suy ra: \(\frac{x-y-z}{x}=-1\) \(\Rightarrow\) \(x-y-z=-x\) \(\Rightarrow\) \(y+z=2x\)
\(\frac{-x+y-z}{y}=-1\) \(-x+y-z=-y\) \(x+z=2y\)
\(\frac{-x-y+z}{z}=-1\) \(-x-y+z=-z\) \(x+y=2z\)
\(A=\left(1+\frac{y}{x}\right)\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)\)
\(=\frac{x+y}{x}.\frac{y+z}{y}.\frac{x+z}{z}\)
\(=\frac{2z}{x}.\frac{2x}{y}.\frac{2y}{z}=8\)
a) Cho x, y, z và x - y - z = 0
Tính giá trị của biểu thức:
\(A=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)
b) Cho x, y, z thỏa mãn: xyz = 1
CMR:
\(\frac{1}{xy+x+1}+\frac{1}{yz+y+1}+\frac{1}{xyz+yz+1}=1\)
1.Cho x,y,z khác 0 thõa mãn x+y+z=xyz và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\sqrt{3}\)
Tính P= \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
Ta có: \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{xz}+\frac{1}{yz}\right)\)
\(\left(\sqrt{3}\right)^2=P+\frac{2\left(z+y+x\right)}{xyz}\)
Mà x+y+z=xyz
=> P+2=3=>P=1
Vậy P=1
cho x+y+z=0 và xyz\(\ne\)0.tính :P=\(\frac{1}{y^2+z^2-x^2}+\frac{1}{x^2+y^2-z^2}+\frac{1}{x^2+z^2-y^2}\)
x + y + z = 0 \(\Leftrightarrow\)\(\hept{\begin{cases}y+z=-x\\x+y=-z\\x+z=-y\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}(y+z)^2=(-x)^2\\(x+y)^2=(-z)^2\\(x+z)^2=(-y)^2\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y^2+2yz+z^2=x^2\\x^2+2xy+y^2=z^2\\x^2+2xz+z^2=y^2\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y^2+z^2-x^2=-2yz\\x^2+y^2-z^2=-2xy\\x^2+z^2-y^2=-2xz\end{cases}}\)
Thay vào P ta được:
P=\(\frac{1}{-2yz}\)\(+\)\(\frac{1}{-2xy}\)\(+\)\(\frac{1}{-2xz}\)\(=\)\(\frac{-x}{2xyz}\)\(+\)\(\frac{-z}{2xyz}\)\(+\)\(\frac{-y}{2xyz}\)\(=\)\(\frac{-(x+y+z)}{2xyz}\)\(=\)0 \((x+y+z=0)\)
Vậy với \(x+y+z=0\)và \(xyz\ne0\)thì \(P=0\)
Cho \(C=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
Tính C biết x,y,z khác 0 thỏa mãn x+y+z=xyz và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1,63205\)
\(x+y+z=xyz\Rightarrow\frac{1}{xy}+\frac{1}{xz}+\frac{1}{yz}=1\)
\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=1,63205^2\Rightarrow C+2\left(\frac{1}{xy}+\frac{1}{xz}+\frac{1}{yz}\right)=1.63205^2\)
\(\Rightarrow C+2=1.63205^2\Rightarrow C=1.63205^2-2\)
đối vs bài bn thì mk ko giải được rùi
Cho x,y,z >0 thỏa mãn \(x+\frac{1}{y}=y+\frac{1}{z}=z+\frac{1}{x}\)
TÍnh P=xyz
Cho x,y,z >0 thỏa mãn \(x+\frac{1}{y}=y+\frac{1}{z}=z+\frac{1}{x}\)
TÍnh P=xyz
\(A=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)
\(A=\frac{x-z}{x}\cdot\frac{y-x}{y}\cdot\frac{y+z}{z}\)
Do \(x-y-z=0\)
\(\Rightarrow x-z=y;y-x=-z;y+z=x\)
Khi đó \(A=\frac{y}{x}\cdot\frac{-z}{y}\cdot\frac{x}{z}=-1\)
Vậy A=-1
\(\frac{1}{xy+x+1}+\frac{y}{yz+y+1}+\frac{1}{xyz+yz+y}\)
\(=\frac{1}{xy+x+1}+\frac{y}{yz+y+1}+\frac{1}{1+yz+y}\)
\(=\frac{1}{xy+x+1}+\frac{y+1}{yz+y+1}\)
\(=\frac{yz}{xy\cdot yz+xyz+yz}+\frac{y+1}{yz+y+1}\)
\(=\frac{yz}{yz+y+1}+\frac{y+1}{yz+y+1}\)
\(=\frac{yz+y+1}{yz+y+1}\)
\(=1\)
Cho 3 số x,y,z khác 0 đồng thời thỏa mãn \(x+y+z=\frac{1}{2},\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{1}{xyz}=4\) và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>0\)
Tính giá trị biểu thức Q=\(\left(y^{2017}+z^{2017}\right)\left(z^{2019}+x^{2019}\right)\left(x^{2021}+y^{2021}\right)\)