trong cac tam giác abc co bc bang a , goc bac bang alpha .tam giac nào có chu vi lớn hơn
Cho tam giac ABC co goc a la goc vuong va chu vi bang 24cm canh goc vuong AB bang 3/4 canh goc vuong AC , canh BC bang 10cm.Tim dien tich hinhb tam giac ABC
cac ban oi giup minh voi nha
cho tam giac abc co goc B Bang gocC tia phan giac goc a cat bc tai d
chung minh rang
a,tam giac adb bang tam giac adc
b ab bang ac
Tam giác abc là tam giac cân ở a vì 2 góa b và c bằng nhau. Do đó ac = ab
Phân giác của goc a là đường cao thẳng góc với cạnh bc. Do đó bd- dc. Tam giac adb bằng tam giác adc
tam giac abc co 1/2 so do goc a bang 2/3 so do goc b bang so do goc c tinh so do cac goc tam giac abc
Theo đề: 1/2 số đo góc A băng 2/3 số đo góc B và bằng số đo góc C
\(\Rightarrow\frac{\widehat{A}}{2}=\frac{2.\widehat{B}}{3}=\widehat{C}\)
\(\Rightarrow\frac{\widehat{A}}{4}=\frac{\widehat{B}}{3}=\frac{\widehat{C}}{2}\)
Mặt khác tỏng số đo 3 góc trong của tam giác bằng 180o => A+B+C=180o
Áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{\widehat{A}}{4}=\frac{\widehat{B}}{3}=\frac{\widehat{C}}{2}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{4+3+2}=\frac{180^o}{9}=20^o\)
khi đó góc A=80o; B=60o;C=40o
tam giac abc co 1/2 so do goc a bang 2/3 so do goc b bang so do goc c tinh so do cac goc tam giac abc
Vì tổng số đo ba góc A, B, C của \(\Delta ABC\)là 180o (Theo định lí tổng ba góc của một tam)
nên \(\widehat{A}+\widehat{B}+\widehat{C}=180^O\)
Vì \(\Delta ABC\) có \(\frac{1}{2}\)số đo góc A bằng \(\frac{2}{3}\)số đo góc B bằng số đo góc C
nên \(\frac{1}{2}\widehat{A}=\frac{2}{3}\widehat{B}=\widehat{C}\)
\(\Rightarrow\frac{\widehat{A}}{2}=\frac{2\widehat{B}}{3}=\widehat{\frac{C}{1}}\)
\(\Rightarrow\frac{\widehat{A}}{2}\cdot\frac{1}{2}=\frac{2\widehat{B}}{3}\cdot\frac{1}{2}=\widehat{\frac{C}{1}}\cdot\frac{1}{2}\)
\(\Rightarrow\frac{\widehat{A}}{4}=\frac{\widehat{B}}{3}=\widehat{\frac{C}{2}}\)
Áp dụng t/c của dãy TSBN ta có:
\(\frac{\widehat{A}}{4}=\frac{\widehat{B}}{3}=\widehat{\frac{C}{2}}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{4+3+2}=\frac{180^O}{9}=20^O\)
Suy ra: \(\widehat{A}=20^o\cdot4=80^o\)
\(\widehat{B}=20^o\cdot3=60^o\)
\(\widehat{C}=20^o\cdot2=40^o\)
Vậy số đo các góc A, B, C của \(\Delta ABC\) lần lượt là 80o, 60o, 40o
1 cho tam giac abc can a , goc a bang 40 do lay d khac phia b so voi ac thoa man goc cad bang 60 do goc cad bang 80 do chung minh bd vuong goc voi ac
2 cho tam giac abc vuong can a . d la diem bat ki tren ab. tren nua mat phang bo ab tu c ve tia bx sao cho goc abx bang 135 do. duong thang vuong goc voi dc ve tu d cat bx o e . chung minh tam giac dec vuong can
3 cho tam giac abc can b goc abc bang 80 do , i la diem trong tam giac sao cho goc iac bang 10 do, ica bang 30 do tinh goc abi
4 cho tam giac abc can a co goc a bang 100 do , bc =a, ac =b ve phia ngoai tam giac abc ve tam giac abd can d co goc adb bang 140 do tinh ch vi tam giac adb theo a,b
ve hinh gium minh voi , xin mn day
a)C/M neu tam giac vuong co mot canh goc vuong bang nua canh huyen thi goc doi dien voi canh ay bang 30'
b)Cho tam giac ABC, goi M la trung diem cua BC, ve AH vuong goc voi BC (H thuoc canh BC). Biet rang BAH=HAM=MAC. Tinh cac goc cua tam giac ABC.
Cho Tam Giac ABC va Tam Giac NPM co BC bang Pm, Goc B bang goc P bang 90 do can Dieu kien gi de tam giac ABC bang tam giac NPM theo truong hop canh huyen goc vuong
A.BA bang Pm B.BA bang PN C.CA bang Mn D.goc A bang goc N
Câu trả lời là A bạn nhé
cho tam giac can ABC tai A,co AC bang 8cm,BC bang 9cm.goi giao cua chung tuyen BM va CN la i
CM tam giac MBC bang tam giac NCB
CM Ai la tia phan giac goc BAC
CM Ai vuong goc voi BC
AB= AC( 2 cạnh bên của tam giác ABC cân tại A)
=> 1/2 AB = 1/2 AC
=> MB = MC
xét tam giác MBC và tam giác NCB
có : BC chung
góc MBC= góc NCB
MB = NC
Vậy tam giác MBC bằng tam giác NCB
B)vì BM và CN đều là trung tuyến và đề cắt nhau tại I => I là trọng tâm
=> AI là trung tuyến
Tam giác ABC cân tại A có AI là trung tuyến
=> AI là phân giác của góc BAC
C) => AI vuông góc BC
Cho tam giac ABC co cac goc nho hon 120 do .ve o phia ngoai tam giac ABC cac tam giac deu ABD ,ACE .goi M la giao diem cua DC va BE.cm :
a)goc BMC bang 120 do ,b)goc AMB bang 120 do