Tìm số tự nhiên \(\overline{ab}\), biết: \(1+2+3+...+\overline{bc}=\overline{abc}\)
Bài 3: Tìm các chữ số a, b, c biết:
a) \(\overline{12ab}=\overline{ab}.26\)
b) \(\overline{7ab}=20.\overline{ab}+35\)
c) \(\overline{2ab2}=36.\overline{ab}\)
d) \(\overline{abc3}-1992=\overline{abc}\)
e*) \(\overline{ab}+\overline{bc}+\overline{ca}=\overline{abc}\)
\(\overline{abc},\overline{def}\) là 2 số tự nhiên có 3 chữ số khác nhau. Biết \(\overline{abcdef}-\overline{defabc}\) chia hết cho 2010. Tìm giá trị lớn nhất của \(\overline{abc}+\overline{def}\).
Có: \(x+y\le\sqrt{2\left(x^2+y^2\right)}\) (dấu bằng xảy ra khi và chỉ khi x=y)
Đặt: \(\hept{\begin{cases}abc=x\\def=y\end{cases}}\)Như vậy x+y đạt GTLN khia và chỉ khi x=y do x không ràng buộc khác y
Thật vậy với x=y thì\(abcdef-defabc=0\)chia hết cho 2010
Vì x,y là 2 số tự nhiên có 3 chữ số khác nhau thức không ràng buộc x khác y
Nên: \(x=y=987\)
Max x+y=\(\sqrt{4\cdot987^2}=1974\)
Không viết đúng không
:v
Mình xem đáp án là 1328 với lại mình gõ nhầm;
abc, def là 2 số tự nhiên có 3 chữ số khác nhau. Biết abcdef - defabc chia hết cho 2010. Tìm giá trị lớn nhất của abc + def .
Đặt: \(\hept{\begin{cases}\overline{abc}=x\\\overline{def}=y\end{cases}}\)
Có: \(\overline{xy}-\overline{yx}=10\left(x-y\right)-\left(x-y\right)=9\left(x-y\right)\)
Vì \(9\left(x-y\right)⋮2010\)
nên: \(\left(x-y\right)⋮670\)
Tức: \(\left(\overline{abc}-\overline{def}\right)⋮670\)
Do đó: \(\overline{abc}-\overline{def}\in BCNN\left(670\right)=\left\{670;1340;...\right\}\)
Vì x,y là số có 3 chữ số nên có: \(\overline{abc}-\overline{def}=670\)
Tức có: \(\overline{abc}>771\&x>y\)
Có: \(100\left(a-d\right)+10\left(b-e\right)-600-70=0\)
\(\Leftrightarrow100\left(a-d-6\right)+10\left(b-e-7\right)=0\)
\(\hept{\begin{cases}a-d=6\\b-e=7\\c=f\end{cases}\left(a>6;b\ge7\right)}\)
Giả sử: a=9 thì d=3 thì tổng a và d lớn nhất nên chọn
Từ đó: b=8 và e=1 thì tổng b và e lớn nhất
Suy ra: c=f=7
Vì thế: \(\hept{\begin{cases}abc=987\\def=317\end{cases}\Rightarrow}abc+def=1304\)
Max là 1304
Làm bừa xem có đúng k nhỉ
1/ Cho \(S=\overline{abc}+\overline{bca}+\overline{cab}\)
Chứng minh rằng: S không phải là số chính phương
2/ Tìm các số có ba chữ số sao cho hiệu của số ấy và số gồm 3 chữ số ấy viết theo thứ tự ngược lại là 1 số chính phương.
3/ Tìm 3 số tự nhiên a, b, c (a > b > c > 0), biết rằng: \(\overline{abc}+\overline{bca}+\overline{cab}=666\)
1) Ta có : \(S=\overline{abc}+\overline{bca}+\overline{cab}=111a+111b+111c=111\left(a+b+c\right)=3.37.\left(a+b+c\right)\)
Giải sử S là số chính phương
=> 3(a + b + c ) \(⋮\) 37
Vì 0 < (a + b + c ) \(\le27\)
=> Điều trên là vô lý
Vậy S không là số chính phương
2/ Gọi số đó là abc
Có: \(\overline{abc}-\overline{cba}=\left(100a+10b+c\right)-\left(100c+10b+a\right)\)
\(=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)\)
Sau đó phân tích 99 ra thành các tích của các số và tìm \(a-c\) sao cho \(99\left(a-c\right)\)là một số chính phương (\(a;c\in N\)và \(a-c\le9\)
Tìm giá trị của k biết rằng:
a) k=\(\frac{\overline{ab}}{\overline{abc}}=\frac{\overline{bc}}{\overline{bca}}=\frac{\overline{ca}}{\overline{cab}}\)
b) k= \(\frac{\overline{abc}}{\overline{ab}+c}=\frac{\overline{bca}}{\overline{bc}+a}=\frac{\overline{cab}}{\overline{ca}+b}\)
Tìm số tự nhiên \(\overline{abc}\)biết \(b^2\)=\(\overline{ac}\);\(\overline{abc}-\overline{cba}=495\)
Ta có: \(\overline{abc}-\overline{cba}=495\)
\(\Rightarrow100a+10b+c-100c-10b-a=495\)
\(\Rightarrow99a-99c=495\)
\(\Rightarrow99.\left(a-c\right)=495\Rightarrow a-c=5\Rightarrow a=5+c\)
Mà \(b^2=\overline{ac}\Rightarrow b^2=10a+c\)
=> \(b^2=10.\left(5+c\right)+c=50+11c\)
Vì \(\overline{ac}\) có 2 chữ số nên:
b^2 < 100
Mà b^2 > 50
=> b^2 thuộc 64,81
b^2 = 64 => 11c = 14 (vô lí)
b^2 = 81 => 11c = 31 (vô lí)
Vậy không có abc thỏa mãn
1.Tìm các chữ số a,b,c biết:\(\frac{1}{\overline{ab}.\overline{bc}}+\frac{1}{\overline{bc}.\overline{ca}}+\frac{1}{\overline{ca}.\overline{ab}}=\frac{11}{3321}\)
2.Tìm tất cả các số nguyên dương x;y thoả mãn:(x+y)4=40x+41
tìm số tự nhiên có 3 chữ số \(\overline{abc}\)sao cho \(\overline{abc}=n^2-1\)và \(\overline{cba}=\left(n-2\right)^2\)
Câu hỏi của Nguyễn Thị Linh Chi - Toán lớp 6 - Học toán với OnlineMath
Tìm số tự nhiên \(\overline{abc}\), biết:
\(1.001\times\overline{abc}=\overline{1b5.a2c}\)
Gợi ý: Ta có \(1.001\times\overline{abc}=\overline{abc.abc}\).
Có cái gợi ý thì dễ rồi
\(\overline{1b5,a2c}=1,001\times\overline{abc}=\overline{abc,abc}\)
\(\overline{1b5,a2c}=\overline{abc,abc}\)
a=1,c=5,b=2
Đáp số:số abc cần tìm là 125
Tìm số tự nhiên có 4 chữ số biết
\(\overline{abba}=\overline{ab}^2+\overline{ba}^2+a-b\)