CMR : Luôn luôn tìm được 1 số có dạng kkk...k chia hết cho 503
CMR luôn tìm được 1 số có dạng kk....k chia hết cho 503
CMR luôn tìm được số có dạng 2016201620162016...2016( gồm các số 2016 viết liên tiếp nhau) chia hết cho 2017
Cho n số tự nhiên bất kỳ. CMR luôn tìm được 1 dãy K số liên tiếp trong n số trên mà có tổng chia hết cho n.
Đặt \(n\)số tự nhiên đó lần lượt là \(a_1,a_2,...,a_n\).
Đặt \(S_1=a_1,S_2=a_1+a_2,S_3=a_1+a_2+a_3,...,S_n=a_1+a_2+...+a_n\).
Nếu có tổng nào trong \(n\)tổng trên chia hết cho \(n\)ta có đpcm.
Nếu không có tổng nào trong \(n\)tổng trên chia hết cho \(n\), khi đó số dư của \(S_k\)khi chia cho \(n\)có thể nhận là \(1,2,...,n-1\)mà có \(n\)tổng, \(n-1\)số dư nên chắc chắn có ít nhất hai trong \(n\)tổng \(S_k\)có cùng số dư khi chia cho \(n\).
Giả sử đó là \(S_x,S_y,x>y\)
Khi đó \(S_x-S_y\)chia hết cho \(n\).
\(S_x-S_y\)là tổng của \(x-y\)số liên tiếp \(S_{y+1},S_{y+2},...,S_x\).
Ta có đpcm.
CMR
a. số có dạng aaa luôn chia hết cho 3
b. tìm những giá trị của a để số aaa chia hết cho 9
a, \(\overline{aaa}=100a+10a+a=111a=37.3.a⋮3\)
b, Để \(\overline{aaa}⋮9\)thì \(\left(a+a+a\right)⋮9\Rightarrow a\in\left\{3;6;9\right\}\)
Chứng minh rằng luôn tìm được 1 số có dạng 111...11 chia hết cho 29
Ta xét dãy số 1; 11; 111; ...; 111...11
30 c.số
Khi mỗi số hạng chia cho 29 thì sẽ có 2 số đồng dư
Giả dụ 2 số đó là 111...1 và 111...1 (n > m)
n c.số m c.số
=> 111...1 - 111...1 = 111...100...0 = 111...11 . 10m
n c.số m c.số
Nhưng ƯCLN (10m,29) = 1 => 111...11 chia hết cho 29
Vậy luôn tìm được 1 số có dạng 111...11 chia hết cho 29
CMR nếu 2 số m,n nguyên tố cùng nhau ( m,n thuộc N )
thì luôn tìm được 1 số k sao cho mk-1 chia hết cho n
CMR giữa ba số nguyên tố lớn hơn 3 luôn luôn tìm được hai số có tổng hoặc hiệu chia hết cho 12
Ta thấy: Một số nguyên tố lớn hơn 3 khi chia cho 12 luôn có số dư là 1;5;7;11.
Ta chia 4 số dư trên thành 2 nhóm:
+ Nhóm 1: Những số nguyên tố chia cho 12 có số dư là 1 và 11.
+ Nhóm 2:Những số nguyên tố chia cho 12 có số dư là 5 và 7.
Theo nguyên lí Đi-rích-lê,có 3 số mà có 2 nhóm thì ít nhất có 1 nhóm có 2 số.
=> Tổng của chúng chia hết cho 12.
Trong 3 số thì ít nhất phải có 2 số có cùng số dư.
=> Hiệu của chúng chia hết cho 12.
Cmr với mọi số nguyên tố p lớn hơn 5 luôn tồn tại số có dạng 111...1 chia hết cho p
Cmr với mọi số nguyên tố p lớn hơn 5 luôn tồn tại số có dạng 111...1 chia hết cho p
giải đi, mình cũng đang cần