chung to neu a,b thuoc n* \(\frac{1}{a}+\frac{1}{b}=\frac{4}{a+b}\) thi a=b
Gia su \(x=\frac{a}{m},y=\frac{b}{m}\)va x<y.Hay chung to rang neu chon \(z=\frac{a+b}{2m}\)thi ta co x<y<z
Su dung tinh chat neu a,b,c thuoc zva a<b thi a+c<b+c
giup mik voi nha tik cho cam on
Do x < y
=> \(\frac{a}{m}< \frac{b}{m}\)
=> \(\frac{a}{m}+\frac{a}{m}< \frac{a}{m}+\frac{b}{m}< \frac{b}{m}+\frac{b}{m}\)
=> \(\frac{2a}{m}< \frac{a+b}{m}< \frac{2b}{m}\)
=> \(\frac{a}{m}< \frac{a+b}{m}:2< \frac{b}{m}\)
=> \(\frac{a}{m}< \frac{a+b}{2m}< \frac{b}{m}\)
=> x < z < y
x. (x^2)^3 = x^5
x^7 ≠ x^5
Nếu,
x^7 - x^5 = 0
mủ lẻ nên phương trình có 3 nghiệm
Đáp số:
x = -1
hoặc
x = 0
hoặc
x = 1
a, Neu A la con cua B thi voi moi x thuoc a, ta co x thuoc B
b, De chung to A la con cua B ta phai chung to voi noi X thuoc A thi X thuoc B
c, quy uoc tap hop rong la tap hop con cua moi tap hop
d,de chung to a khong phai tap hop con cua b, chi can neu ra 1 phan tu thuoc a ma khong thuoc b
nếu a là tập hợp con cua tap hop b thi ta co x thuoc b
thì ta làm thế nào
chung minh rang :
Neu a,b trai dau thi \(\frac{b-a}{b\sqrt{\frac{-a}{b}}}=\frac{a-b}{a\sqrt{\frac{-b}{a}}}\)
cho a,b,c thuoc N*
chung minh:\(\frac{a}{a+b}\)+\(\frac{b}{b+c}\)+\(\frac{c}{c+a}\)>1
Ta có: \(\hept{\begin{cases}\frac{a}{a+b}>\frac{a}{a+b+c}\\\frac{b}{b+c}>\frac{b}{a+b+c}\\\frac{c}{c+a}>\frac{c}{a+b+c}\end{cases}}\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>1\left(đpcm\right)\)
Chung minh rang neu : \(0<\frac{a}{b}<1;b>0;m>0\) thi \(\frac{a}{b}<\frac{a+m}{b+m}\)
cac ban khong lam thi minh lam nhe
sang tien cho ****
he he he he!
Vi :\(0<\frac{a}{b}<1\left(b>0\right)\) nen a<b ma m>0, do do am<bm , them ab vao 2 ve :
ab+am<ab+bm hay a(b+m)<b(a+m) ma b>0 va b+m>0 nen suy ra :
\(\frac{a}{b}<\frac{a+m}{b+m}\)
**** nhe moi ng
Chung minh rang neu a^2=bc thi
a) \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
b) \(\frac{a^2+c^2}{b^2+a^2}=\frac{c}{b}\)
a/ \(\frac{a+b}{a-b}-\frac{c+a}{c-a}=\frac{\left(a+b\right)\left(c-a\right)-\left(c+a\right)\left(a-b\right)}{\left(a-b\right)\left(c-a\right)}=.\)
\(=\frac{\left(ac-a^2+bc-ab\right)-\left(ac-bc+a^2-ab\right)}{\left(a-b\right)\left(c-a\right)}=\frac{2bc-2a^2}{\left(a-b\right)\left(c-a\right)}=\)
\(=\frac{2bc-2bc}{\left(a-b\right)\left(c-a\right)}=0\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
b/ \(=\frac{bc+c^2}{b^2+bc}=\frac{c\left(b+c\right)}{b\left(b+c\right)}=\frac{c}{b}\) (dpcm)
chung to rang neu p=a+b la mot so nguyen to (a;b thuoc N*) thi a va b la hai so nguyen to cung nhau
CMR neu a+b=1 thi: \(\frac{b}{a^3-1}-\frac{a}{b^3-1}=\frac{2\left(a-b\right)}{a^2b^2+3}\)
cho a,b thuoc N .chung to rang neu 5a +36 va 13a +8bcung chia het cho 2012 thi a va b cung chia het cho 12