CMR: Số các chữ số của 2016^2016 và 2016^2016 + 2^2016 là bằng nhau
Cho a = 1^2016 + 2^2106 + .............+ 2016^2016 cmr : a ko là số chính phương
Cho 2016 số nguyên dương \(a_1\) , \(a_2\), ......\(,a_{2016}\)thỏa mãn :
\(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{2016}}=12\)
CMR trong 2016 số trên có ít nhất 2 số bằng nhau
Giả sử trong 2016 số hạng không có số nào bằng nhau.Không mất tính tổng quát ta giả sử:
\(a_1< a_2< a_3< ...........< a_{2016}\)
Vì \(a_1,a_2,......,a_{2016}\) đều là số nguyên dương nên ta suy ra:
\(a_1\ge1,a_2\ge2,.........,a_{2016}\ge2016\)
Suy ra:\(\frac{1}{a_1}+\frac{1}{a_2}+.........+\frac{1}{a_{2016}}< 1+\frac{1}{2}+\frac{1}{3}+.......+\frac{1}{2016}\)
\(=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+.....+\left(\frac{1}{1024}+...+\frac{1}{2016}\right)\)
\(< 1+\frac{1}{2}.2+\frac{1}{2^2}.2^2+.........+\frac{1}{2^{10}}.2^{10}=11< 12\)
Do đó điều giả sử là sai
Vậy trong 2016 số đã cho có ít nhất hai số bằng nhau
Ko biết thì bạn đừng nói nhé =)) Spam quá à
CMR luôn tìm được số có dạng 2016201620162016...2016( gồm các số 2016 viết liên tiếp nhau) chia hết cho 2017
Cho các số nguyên dương a,b,c thỏa mãn: a+b+c=2016
CMR: giá trị biểu thức sau không phải là một số nguyên:
A=a:(2016-c)+b:(2016-a)+c:(2016-b)
cho 2016 số nguyên dương a1 ;a2;a3;.....2016 thỏa mãn 1/a1+1/a2+...+1/a2016 cmr tồn tại ít nhất hai số bằng nhau
hai số 22016 và 52016 viết liền nhau thì được một số có mấy chữ số
Gọi số chữ số của 22016 là a (\(a\in\)N*)
Gọi số chữ số của 52016 là b (\(b\in\)N*)
=>\(\hept{\begin{cases}10^{a-1}< 2^{2016}< 10^a\\10^{b-1}< 5^{2016}< 10^b\end{cases}}\)
=>\(10^{a-1}.10^{b-1}< 2^{2016}.5^{2016}< 10^a.10^b\)
=>\(10^{a+b-2}< 10^{2016}< 10^{a+b}\)
=> a + b - 2 < 2016 < a + b
=> 2016 < a + b < 2018
Mà a+b là số tự nhiên => a+b=2017
Vậy 2 số 22016 và 52016 viết liền nhau thì được một số có 2017 chữ số
cmr có 2 lũy thừa của số 2016 có 4 chữ số tận cùng giống nhau
Cho x,y,x là các số thỏa mãn xyz=2016
CMR: \(\frac{2016\cdot x}{x\cdot y+2016\cdot x+2016}+\frac{y}{y\cdot z+y+2016}+\frac{z}{x\cdot z+z+1}=1\)
\(\frac{2016.x}{xy+2016x+2016}+\frac{y}{yz+y+2016}+\frac{z}{xz+z+1}\)= \(\frac{2016x}{xy+2016x+1}+\frac{xy}{xyz+xy+2016x}+\frac{xyz}{xxyz+xyz+xy}\) = \(\frac{2016x}{xy+2016x+xyz}+\frac{xy}{xyz+xy+2016x}+\frac{xyz}{2016x+xyz+xy}\)
=\(\frac{2016x+xy+xyz}{2016x+xy+xyz}=1\)
Cho 2016 số nguyên dương \(a_1;a_2;a_3;....;a_{2016}\) thỏa mãn:
\(\dfrac{1}{a_1}+\dfrac{1}{a_2}+\dfrac{1}{a_3}+...+\dfrac{1}{a_{2016}}=300\). Chứng minh rằng tồn tại ít nhất 2 số trong 2016 số đã cho bằng nhau
TK: Câu hỏi của Lãnh Hạ Thiên Băng - Toán lớp 6 - Học trực tuyến OLM