Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nancy Jewel McDonie
Xem chi tiết
Trần Nhật Dương
10 tháng 6 2018 lúc 16:22

a) Xét trên tử

Ta có :

1.5.6 + 2.10.12 + 4.20.24 + 9.45.54

= 1.5.6 + \(^{2^3}\). 1.5.6 + \(^{4^3}\).1.5.6 + \(^{9^3}\).1.5.6

= 1.5.6 ( 2^3 + 4^3 + 9^3 )

Xét mẫu

Ta có :

1.3.5 + 2.6.10 + 4.12.20 + 9.27.45

= 1.3.5 + 2^3 .1.3.5 + 4^3 . 1.3.5 + 9^3 .1.3.5

= 1.3.5 ( 2^3 + 4^3 + 9^3 )

Ta có 

A = \(\frac{1.5.6.\left(2^3+4^3+9^3\right)}{1.3.5.\left(2^3+4^3+9^3\right)}\)= 2

b) Ta có :

 k(k+1)(k+2)-(k-1)k(k+1) = k(k + 1) (k + 2 - k + 1 ) = k( k + 1 ) . 3 = 3k( k + 1 )

Ta có :

S = 1.2 + 2.3 + 3.4 + ... + n(n + 1 )

\(\Rightarrow\)3S = 1.2.3 + 2.3.3 + 3.4.3 + ... + n(n + 1) . 3

3S = 1.2.3 + 2.3(4 - 1) + 3.4(5 - 2) + ... + n(n + 1)[(n + 2) - (n - 1)]

3S = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + 3.4.5 - 2.3.4 + ... + n(n + 1)(n + 2) - (n - 1)n(n + 1)

3S = n(n + 1)(n + 2)

S = \(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

Quỳnh An
Xem chi tiết
Hoàng Mai Linh
Xem chi tiết
Tran Le Khanh Linh
15 tháng 4 2020 lúc 19:26

sửa đề: N=(a-2)(a+3)-(a-3)(a+2)

=(a2+3a-2-6)-(a2+2a-3a-6)

=a2+a-6-a2+a+6=2a là số chẵn với mọi a thuộc Z

Khách vãng lai đã xóa
Bùi Quang Trí
15 tháng 4 2020 lúc 19:42

C1: nếu a chẳn thì (a-2) và (a+20) là số chẳn. Do đó (a-2)(a+3) và (a-3)(a+20) chẳn nên N chẳn.

nếu a lẻ thì (a+3) và (a-3) là số chẳn. Do đó (a-2)(a+3) và (a-3)(a+20) chẳn nên N chẳn.

C2:

vì a thuộc Z nên a có thể viết bằng: a = 2n hoặc a = 2n+1.

Nếu a = 2n thì N=(2n-2)(2n+3) - (2n-3)(2n+20) = 2*[(n-1)(2n+3) - (2n-3)(n+10)]. Do đó N là số chẳn.

Nếu a= 2n+1 thì N =(2n+1 -2)(2n+1+3) -(2n+1-3)(2n+1+20) = 2*[(2n-1)(n+1) - (n-1)(2n+21)]. Do đó N là số chẳn.

Kết luận: N chẳn với mọi a.(DPCM)

Khách vãng lai đã xóa
Nguyễn Đình Hưng
15 tháng 4 2020 lúc 20:08

Xét 2 trường hợp:

+ Trường hợp 1: a là 1 số chẵn

                  => a=2k \(\left(k\inℤ\right)\)

Ta có (a-2)(a+3)-(a-3)(a+20)= (2k-2)(2k+3)-(2k-3)(2k+20)= 2(k-1)(2k+3)-(2k-3).2(k+10)

                                                                                            = 2. [(k-1)(2k+3)-(2k-3)(k+10)] \(⋮2\)

                     => (a-2)(a+3)-(a-3)(a+20) là 1 số chẵn.

 + Trường hợp 2: a là 1 số lẻ

                  => a=2k+1 \(\left(k\inℤ\right)\)

Ta có (a-2)(a+3)-(a-3)(a+20)=(2k+1-2)(2k+1+3)-(2k+1-3)(2k+1+20)=(2k-1).2(k+2)-2(k-1)(2k+21)

                                                                                                           = 2.[(2k-1)(k+2)-(k-1)(2k+21)] \(⋮2\)

                      => (a-2)(a+3)-(a-3)(a+20) là 1 số chẵn.

Vậy nếu a\(\inℤ\)thì  N=(a-2)(a+3)-(a-3)(a+20) là 1 số chẵn

Bạn tham khảo bài làm của mik nhé!!! k cho mik nha

Khách vãng lai đã xóa
IzanamiAiko123
Xem chi tiết
Nguyễn Thị Bich Phương
Xem chi tiết
Akai Haruma
13 tháng 7 lúc 16:28

Lời giải:

Đặt $a^2+a+1=m$. Khi đó:

$A=m(m+1)-12=m^2+m-12=(m^2-3m)+(4m-12)=m(m-3)+4(m-3)$

$=(m-3)(m+4)=(a^2+a+1-3)(a^2+a+1+4)$

$=(a^2+a-2)(a^2+a+5)=[a(a-1)+2(a-1)](a^2+a+5)$

$=(a-1)(a+2)(a^2+a+5)$

Quân Thiên Vũ
Xem chi tiết
Hoàng Văn Thái
25 tháng 9 2016 lúc 5:30

ta có b=a-1 =>a-b=1

(a+b)(a2+b2)(a4+b4)....(a64+b64)=(a-b)(a+b)(a2+b2).....(a64+b64)=(a64-b64)(a64+b64)=a128-b128

nguyễn hải chi
Xem chi tiết
Nguyễn Thị Hồng Điệp
9 tháng 10 2016 lúc 15:25

Q = (a - 2)(a + 3) - (a - 3)(a + 2)

Nếu a là số lẻ

thì (a - 2)(a + 3) - (a - 3)(a + 2) suy ra lẻ * chẵn - chẫn * lẻ = chẵn - chẵn = chẵn (1)

Nếu a là số chẵn 

thì (a - 2)(a + 3) - (a - 3)(a + 2) suy ra chẵn * lẻ - lẻ * chẵn = chẵn - chẵn = chẵn (2)

Từ (1) và (2) suy ra đpcm

Xuandung Nguyen
Xem chi tiết
Mori Ran
Xem chi tiết
Mori Ran
5 tháng 1 2019 lúc 8:21

Hộ mình nha