Chứng minh:(n+3).(n+1) là 2 số nguyên tố cùng nhau
Chứng minh 2n+5 và 6n+17 là hai số nguyên tố cùng nhau
Chứng minh 2 số lẻ liên tiếp là hai số nguyên tố cùng nhau
Chứng minh n+3 và 3n+10 là hai số nguyên tố cùng nhau
1.Chứng tỏ rằng hai số lẻ liên tiếp là hai số nguyên tố cùng nhau
2.Chứng minh rằng với mọi số tự nhiên , các số sau là các số nguyên tố cùng nhau.
a) n+1 và n+2 b)2n+2 và 2n+3
c)2n+1 và n+1 d)n+1 và 3n+4
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
Bài 2:
c.
Gọi $d=ƯCLN(2n+1, n+1)$
$\Rightarrow 2n+1\vdots d; n+1\vdots d$
$\Rightarrow 2(n+1)-(2n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(2n+1, n+1)=1$ nên 2 số này nguyên tố cùng nhau.
d.
Gọi $d=ƯCLN(n+1, 3n+4)$
$\Rightarrow n+1\vdots d; 3n+4\vdots d$
$\Rightarrow 3n+4-3(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(n+1, 3n+4)=1$
$\Rightarrow$ 2 số này nguyên tố cùng nhau.
1.Cho A=2n-1; B=n(n-1) Chứng minh rằng A và B nguyên tố cùng nhau
2. Cho A và B là 2 số nguyên tố cùng nhau.
Chứng minh A=5a+3b và B=13a+8b là 2 số nguyên tố cùng nhau
1.Tìm số nguyên tố p sao cho p+3 cũng là số nguyên tố
2. Cho n thuộc N. Chứng minh rằng hai số n+1 và 2n+3 là hai số nguyên tố cùng nhau
1. Vì p+3>2 =>p+3 là số lẻ =>p là số chẵn mà p là số nguyên tố =>p=2
2.Ta gọi ƯCLN(n+1;2n+3) là a với a là số tự nhiên
=>n+1;2n+3 chia hết cho a
=>2.(n+1);2n+3 chia hết cho a
=>2n+2;2n+3 chia hết cho a
=>(2n+3)-(2n+2) chia hết cho a
=>1 chia hết cho a
=>a=1
=>n+1 và 2n+3 là hai số nguyên tố cùng nhau
Cho n là số tự nhiên. Chứng minh 2n + 3 và n + 1 là hai số nguyên tố cùng nhau.
Cho n là số tự nhiên. Chứng minh n + 3 và n là hai số nguyên tố cùng nhau với n > 4.
Ai nhanh nhất mình tick cho
gọi d là ƯCLN(2n+3;n+1)
Ta có:n+1 chia hết cho d =>2n+2chia hết cho d(1)
2n+3 chia hết cho d(2)
Từ (1)(2)=>(2n+3)-(2n+2)chia hết cho d
hay 1 chia hết cho d
Vậy d=1=>2n+3 và n+1 là hai số nguyên tố cùng nhau(đpcm)
làm ơn làm phước cho mk 3 tick đi mk mà
please
a) chứng minh rằng khi nla số tự nhiên khác 0 thì n+1 là 2 số nguyên tố cùng nhau.
b)chứng minh rằng với mọi số tự nhiên n thì các số sau là nguyên tố cùng nhau :2n+3 va 4n+8
e có 2 chia hết cho d; 2n+3 lẻ nên (2n+3,4n+8)=1
còn n+1-n=1 nên (n,n+1)=1
Chứng minh rằng n + 1 và n+3 là 2 số nguyên tố cùng nhau
because n+1 và n+3 là 2số lẻ liên tiếp
=>n+1vàn+3là 2 số nguyên tố cùng nhau
Nhưng mà cho mình hỏi. Vì n là số tự nhiên nên n có thể là lẻ hoặc chẵn. Xét trường hợp 1 là nếu n chẵn thì
n+1 và n+3 lẻ.
=> Hai số này có ƯCLN là 1
=> n+1 và +3 nguyên tố cùng nhau
TH2 : Nếu n lẻ => n+1 và n+3 chẵn=> ƯCLN(n+1,n+3)= 2=> 2 số này không nguyên tố cùng nhau.
Vả lại,cho mình xin lỗi Nguyễn Thành Trung vì đề nhầm, không có đủ dữ liệu để chứng minh
Chứng minh: (n+1) và (3.n+4) với n thuộc N là 2 số nguyên tố cùng nhau
Gọi ƯCLN ( n+1,3.n+4) là a
Ta có : ( n+1) và ( 3.n+4)
Nên : n+1 chia hết cho a và 3.n+ 4 chia hết cho a
Nên : 3.n+3 Và 3.n+4 chia hết cho a
3.n+4 - 3.n-3 chia hết cho a
nên 1 chia hết cho a
nên a=1
Vậy ...
Gọi d \(\in\)ƯC(n+1;3n+4)
=> 3n+4 chia hết cho d
n+1 chia hết cho d =>3n+3 chia hết cho d
=>3n+4-3n-3 chia hết cho d
=>1 chia hết cho d
=>d=1
=>n+1 và 3n+4 là 2 số nguyên tố cùng nhau
=>đpcm
Cho m,n là 2 số nguyên tố cùng nhau . Chứng minh m^2 + n^2 cũng là 2 số nguyên tố cùng nhau