Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
SSSSSky
Xem chi tiết
Đỗ Ngọc Hà Giang
Xem chi tiết
Akai Haruma
18 tháng 11 2023 lúc 20:12

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

Akai Haruma
18 tháng 11 2023 lúc 20:15

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

Akai Haruma
18 tháng 11 2023 lúc 20:16

Bài 2:

c.

Gọi $d=ƯCLN(2n+1, n+1)$

$\Rightarrow 2n+1\vdots d; n+1\vdots d$
$\Rightarrow 2(n+1)-(2n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$

Vậy $ƯCLN(2n+1, n+1)=1$ nên 2 số này nguyên tố cùng nhau.

d.

Gọi $d=ƯCLN(n+1, 3n+4)$

$\Rightarrow n+1\vdots d; 3n+4\vdots d$

$\Rightarrow 3n+4-3(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(n+1, 3n+4)=1$

$\Rightarrow$ 2 số này nguyên tố cùng nhau.

Nguyễn Trúc Quỳnh
Xem chi tiết
Lại Vũ  Anh
20 tháng 12 2022 lúc 21:08

Hi

 

Nguyễn Khánh Huyền Linh
Xem chi tiết
Hoàng C5
13 tháng 12 2016 lúc 10:59

1. Vì p+3>2 =>p+3 là số lẻ =>p là số chẵn mà p là số nguyên tố =>p=2

2.Ta gọi ƯCLN(n+1;2n+3) là a với a là số tự nhiên

=>n+1;2n+3 chia hết cho a

=>2.(n+1);2n+3 chia hết cho a

=>2n+2;2n+3 chia hết cho a

=>(2n+3)-(2n+2) chia hết cho a

=>1 chia hết cho a

=>a=1

=>n+1 và 2n+3 là hai số nguyên tố cùng nhau

Trịnh Như Quỳnh
Xem chi tiết
Potter Harry
19 tháng 12 2015 lúc 19:51

gọi d là ƯCLN(2n+3;n+1)

Ta có:n+1 chia hết cho d =>2n+2chia hết cho d(1)

         2n+3 chia hết cho d(2)

Từ (1)(2)=>(2n+3)-(2n+2)chia hết cho d

                           hay 1 chia hết cho d

Vậy d=1=>2n+3 và n+1 là hai số nguyên tố cùng nhau(đpcm)

Ngô Phúc Dương
19 tháng 12 2015 lúc 19:48

làm ơn làm phước cho mk 3 tick đi mk mà

please

Lê Thị Trà My
Xem chi tiết
shitbo
16 tháng 11 2020 lúc 21:08

e có 2 chia hết cho d; 2n+3 lẻ nên (2n+3,4n+8)=1

còn n+1-n=1 nên (n,n+1)=1

Khách vãng lai đã xóa
Chim cánh cụt
Xem chi tiết
Nguyễn Thành Trung
31 tháng 10 2016 lúc 20:12

because n+1 và n+3 là 2số lẻ liên tiếp

=>n+1vàn+3là 2 số nguyên tố cùng nhau

Chim cánh cụt
19 tháng 11 2016 lúc 21:01

Nhưng mà cho mình hỏi. Vì n là số tự nhiên nên n có thể là lẻ hoặc chẵn. Xét trường hợp 1 là nếu n chẵn thì

n+1 và n+3 lẻ.

=> Hai số này có ƯCLN là 1

=> n+1 và +3 nguyên tố cùng nhau

TH2 : Nếu n lẻ => n+1 và n+3 chẵn=>  ƯCLN(n+1,n+3)= 2=> 2 số này không nguyên tố cùng nhau.

Vả lại,cho mình xin lỗi Nguyễn Thành Trung vì đề nhầm, không có đủ dữ liệu để chứng minh

Phan Duc Hieu
Xem chi tiết
Trịnh Ngọc Quang
4 tháng 11 2015 lúc 19:59

Gọi ƯCLN  ( n+1,3.n+4) là a

Ta có : ( n+1) và ( 3.n+4)

Nên  :     n+1 chia hết cho a và 3.n+ 4 chia hết cho a

Nên :     3.n+3 Và 3.n+4 chia hết cho a

 3.n+4 - 3.n-3 chia hết cho a

nên 1 chia hết cho a

nên a=1

           Vậy ...

Trịnh Xuân Diện
4 tháng 11 2015 lúc 19:58

Gọi d \(\in\)ƯC(n+1;3n+4)

=> 3n+4 chia hết cho d

n+1 chia hết cho d =>3n+3 chia hết cho d

=>3n+4-3n-3 chia hết cho d

=>1 chia hết cho d

=>d=1

=>n+1 và 3n+4 là 2 số nguyên tố cùng nhau

=>đpcm

Vũ Nam Khánh
Xem chi tiết