CHO ABC=1 VÀ A+B+C=1/A+1/B+1/C
CM RẰNG TRONG 3 SỐ A,B,C PHẢI CÓ MỘT SỐ BẰNG 1
cho abc=1 và a+b+c=1/a+1/b+1/c. chứng minh rằng trong 3 số a,b,c có 1 số bằng 1
\(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ac}{abc}=ab+bc+ac\)
a(b-1) + c(b-1) + ac -b =0
=> (b-1)(a+c) +ac-abc.b =0
=>(b-1)(a+c) + ac(1-b)(1+b) =0
=> (b-1)(a+c-(ac +abc)) =0
=>(b-1)(a(1-c) +c -1) =0
=> (b-1)(a-1)(c-1) =0
Vậy a =1 hoặc b =1 hoặc c =1
Cho abc= 1 và a+ b+ c=1/a +1/b +1/c . Chứng minh rằng trong 3 số a,b,c tồn tại một số bằng 1.
\(a+b+c=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
\(\Leftrightarrow a+b+c=\dfrac{ab+bc+ca}{abc}\)
\(\Leftrightarrow a+b+c-ab-bc-ca=0\)
\(\Leftrightarrow a+b+c-ab-bc-ca+abc-1=0\)
\(\Leftrightarrow\left(a-ac\right)+\left(b-bc\right)+\left(-ab+abc\right)+\left(c-1\right)=0\)
\(\Leftrightarrow-a\left(c-1\right)-b\left(c-1\right)+ab\left(c-1\right)+\left(c-1\right)=0\)
\(\Leftrightarrow\left(-a-b+ab+1\right)\left(c-1\right)=0\)
\(\Leftrightarrow\left[b\left(a-1\right)-\left(a-1\right)\right]\left(c-1\right)\)
\(\Leftrightarrow\left(b-1\right)\left(a-1\right)\left(c-1\right)=0\)
\(\Rightarrow\)\(\left[{}\begin{matrix}a-1=0\\b-1=0\\c-1=0\end{matrix}\right.\)
\(\Rightarrow\)\(\left[{}\begin{matrix}a=1\\b=1\\c=1\end{matrix}\right.\)(đpcm)
chứng minh rằng trong ba số a,b,c thỏa mãn a+b+c=2016 và 1/a+1/b+1/c=1/2016 thì trong ba số phải có một số bằng 2016
Câu hỏi của đàm anh quân lê - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo cách làm tương tự!
chứng minh rằng : nếu 3 số a,b,c thỏa mãn \(a+b+c=2000\) và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2000}\) thì 1 trong 3 số phải có 1 số bằng \(2000\)
ĐKXĐ : a;b;c \(\ne0\)
Ta có : \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2000}\)
\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
\(\Leftrightarrow\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}-\dfrac{1}{a}\)
\(\Leftrightarrow\dfrac{b+c}{bc}=\dfrac{-\left(b+c\right)}{a\left(a+b+c\right)}\)
\(\Leftrightarrow\left(b+c\right)\left(\dfrac{1}{bc}+\dfrac{1}{a\left(a+b+c\right)}\right)=0\)
\(\Leftrightarrow\left(b+c\right).\dfrac{a\left(a+b+c\right)+bc}{abc\left(a+b+c\right)}=0\)
\(\Leftrightarrow\left(b+c\right).\dfrac{a^2+ab+ac+bc}{abc\left(a+b+c\right)}=0\)
\(\Leftrightarrow\dfrac{\left(b+c\right)\left(a+b\right)\left(a+c\right)}{abc\left(a+b+c\right)}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}b+c=0\\a+b=0\\a+c=0\end{matrix}\right.\left(1\right)\)
Từ (1) kết hợp a + b + c = 2000 ta được điều phải chứng minh
Chứng minh rằng nếu a, b, c là ba số thỏa mãn a + b +c = 2013 và 1/a + 1/b + 1/c = 1/2013 thì phải có một trong ba số bằng 2013
A, cho abc = 1 và a+b+c = 1/a +1/b +1/c. Chứng minh tồn tại một trong 3 số a,b,c bằng 1
B, chứng minh rằng nếu a + b + c = n và 1/a + 1/b + 1/c = 1/n thì tồn tại một trong ba số bằng n
C, chứng minh rằng nếu 3 số a,b,c khác 0 thì thỏa mãn đẳng thức
a2 -- b2 / ab + b2 -- c2 /bc + c2 -- a2/ca =0
thì tồn tại hai số bằng nhau
Chứng minh rằng nếu a,b,c thỏa mãn a+b+c = 2000 và 1/a + 1/b + 1/c = 1/2000 thì một trong 3 số a,b,c phải có 1 số = 2000
Em tham khảo cách làm tương tự như link bên dưới:
Câu hỏi của đàm anh quân lê - Toán lớp 8 - Học toán với OnlineMath
chứng minh rằng nếu a b c là 3 số thỏa mãn a+b+c=2008 và 1/a+1/b+1/c=1/2008 thì trong ba số a b c phải có một số = 2008
Em tham khảo cách làm tương tự như link bên dưới nhé!
Câu hỏi của đàm anh quân lê - Toán lớp 8 - Học toán với OnlineMath
Chứng minh rằng nếu 3 số a; b; c thoả mãn a+ b +c= 2008 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}=\frac{1}{2008}\)
thì trong 3 số đó phải có một số bằng 2008
Vào đây nhé: Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath