tìm ƯCLN của 2n +1 và \(\frac{n+1}{2}\)với n e N
Cho n e N,tìm ƯCLN của :
a) 4n + 3 và 2n + 1
b) 6n + 1 và 4n + 5 với n \(\ne\)13k + 2
a) Gọi d là ước chung lớn nhất của 4n + 3 và 2n + 1 ( n e N )
Ta có : 4n + 3 \(⋮\)d ( 1 )
2n + 1 \(⋮\)d hay 2 ( 2n + 1 ) \(⋮\)d = 4n + 2 \(⋮\)d ( 2 )
Từ ( 1 ) và ( 2 ) suy ra : ( 4n + 3 ) - ( 4n + 2 ) \(⋮\)d
hay 1 \(⋮\)d suy ra d = 1
Vậy ƯCLN ( 4n + 3 ; 2n + 1 ) = 1
b) Gọi d là ước chung lớn nhất của 6n + 1 và 4n + 5
Ta có : 6n + 1 \(⋮\)d hay 2 ( 6n + 1 ) \(⋮\)d = 12n + 2 \(⋮\)d ( 1 )
4n + 5 \(⋮\)d hay 3 ( 4n + 5 ) \(⋮\)d = 12n + 15 \(⋮\)d ( 2 )
Từ ( 1 ) và ( 2 ) suy ra
( 12n + 15 ) - ( 12n + 2 ) \(⋮\)d
Hay 13 \(⋮\)d
Suy ra d e ƯC ( 13 ) = { 1 ; 13 }
Ta có 6n + 1 chia hết cho 13 suy ra 2 ( 6n + 1 ) chia hết cho 13 suy ra 13n - ( n - 2 ) chia hết cho 13
suy ra n - 2 chia hết cho 13 suy ra n - 2 = 13k suy ra n = 13k + 2 ( k e N )
Suy ra với n \(\ne\)13k + 2 thì 6n + 1 không chia hết cho 13 nên d không thể là 13.
Do đó d = 1
Vậy ƯCLN ( 6n + 1 , 4n + 5 ) = 1
) Gọi d là ước chung lớn nhất của 4n + 3 và 2n + 1 ( n e N )
Ta có : 4n + 3 ⋮d ( 1 )
2n + 1 ⋮d hay 2 ( 2n + 1 ) ⋮d = 4n + 2 ⋮d ( 2 )
Từ ( 1 ) và ( 2 ) suy ra : ( 4n + 3 ) - ( 4n + 2 ) ⋮d
hay 1 ⋮d suy ra d = 1
Vậy ƯCLN ( 4n + 3 ; 2n + 1 ) = 1
b) Gọi d là ước chung lớn nhất của 6n + 1 và 4n + 5
Ta có : 6n + 1 ⋮d hay 2 ( 6n + 1 ) ⋮d = 12n + 2 ⋮d ( 1 )
4n + 5 ⋮d hay 3 ( 4n + 5 ) ⋮d = 12n + 15 ⋮d ( 2 )
Từ ( 1 ) và ( 2 ) suy ra
( 12n + 15 ) - ( 12n + 2 ) ⋮d
Hay 13 ⋮d
Suy ra d e ƯC ( 13 ) = { 1 ; 13 }
Ta có 6n + 1 chia hết cho 13 suy ra 2 ( 6n + 1 ) chia hết cho 13 suy ra 13n - ( n - 2 ) chia hết cho 13
suy ra n - 2 chia hết cho 13 suy ra n - 2 = 13k suy ra n = 13k + 2 ( k e N )
Suy ra với n ≠ 13k + 2 thì 6n + 1 không chia hết cho 13 nên d không thể là 13.
) Gọi d là ước chung lớn nhất của 4n + 3 và 2n + 1 ( n e N ) T
a có : 4n + 3 ⋮d ( 1 )
2n + 1 ⋮d hay 2 ( 2n + 1 ) ⋮d = 4n + 2 ⋮d ( 2 )
Từ ( 1 ) và ( 2 ) suy ra : ( 4n + 3 ) - ( 4n + 2 ) ⋮d hay 1 ⋮d
suy ra d = 1 Vậy ƯCLN ( 4n + 3 ; 2n + 1 ) = 1
b) Gọi d là ước chung lớn nhất của 6n + 1 và 4n + 5
Ta có : 6n + 1 ⋮d hay 2 ( 6n + 1 ) ⋮d = 12n + 2 ⋮d ( 1 )
4n + 5 ⋮d hay 3 ( 4n + 5 ) ⋮d = 12n + 15 ⋮d ( 2 )
Từ ( 1 ) và ( 2 ) suy ra ( 12n + 15 ) - ( 12n + 2 ) ⋮d Hay 13 ⋮d
Suy ra d e ƯC ( 13 ) = { 1 ; 13 }
Ta có 6n + 1 chia hết cho 13 suy ra 2 ( 6n + 1 ) chia hết cho 13
suy ra 13n - ( n - 2 ) chia hết cho 13
suy ra n - 2 chia hết cho 13
suy ra n - 2 = 13k
suy ra n = 13k + 2 ( k e N )
Suy ra với n ≠ 13k + 2 thì 6n + 1 không chia hết cho 13 nên d không thể là 13.
tìm ưcln của \(\frac{n\left(n+1\right)}{2}\)và \(2n+1\)( n thuộc n * )
gọi d \(d\inưc\left(\frac{n\left(n+1\right)}{2},2n+1\right)\)thì \(n\left(n+1\right)⋮d\)và \(2n+1⋮d\)
\(\Rightarrow n\left(2n+1\right)-n\left(n+1\right)⋮d\)tức là \(n^2⋮d\)
từ \(n\left(n+1\right)⋮d\) và \(n^2⋮d\Rightarrow n⋮d\)ta lại có \(n2+1⋮d\), do đó\(1⋮d\)nên \(d=1\)
vậy ƯCLN CỦA\(\frac{n\left(n+1\right)}{2}\)và\(2n+1=1\)
Tìm ưcln của 2n + 2 và 2n ( n E N*)
Gọi d E ƯC (2n-1,9n+4)=> 2(9n+4)-9(2n-1) chia hết cho d => (18n+8)-(18n-9) chia hết cho 17 => 17 chia hết cho d => dE{1,17}
TA có 2n-1 chia hết cho 17 <=> 2n-18 chia hết cho 17 <=> 2(n-9) chia hết cho 17
Vì ucln (2;17)=1 => n-9 chia hết cho 17 <=> n-9 = 17k <=> n = 17k+9 (kEN)
-Nếu n=17k +9 thì 2n-1=2.(17k+9)-1 = 34k-17=17.(2k+1)chia hết cho 17
và 9n+4 = 9.(17k+9)+4=153k + 85=17.(9+5) chia hết cho 17
Do đó ucln (2n-2;9n+4)=17
- Nếu n khác 17k +9 thì 2n-1 không chia hết cho 17, do đó ucln (2n-1; 9n+4)=1
Vậy ucln (2n-1;9n+4)=17
Tìm ƯCLN của \(\frac{n\left(n+1\right)}{2}\)và 2n + 1 ( n \(\in\)N* )
gọi d thuộc ƯC(n(n+1)/2 ; 2n+1) với d thuộc N*
=>n(n+1)/2 chia hết cho d hay n.(n+1) chia hết cho d và 2n+1 chia hết cho d
=>n(2n+1)-n(n+1) chia hết cho d
=>2n^2+n-n^2+n chia hết cho d =>n^2+(n^2+n-n^2+n) chia hết cho d
=>n^2 chia hết cho d
TỪ n.(n+1)=n^2+n chia hết cho d và n^2 chia hết cho d =>n chia hết cho d
Ta lại có 2n+1 chia hết cho d,mà n chia hết cho d=> 2n chia hết cho d =>1 chia hết cho d =>d=1
a. Tìm ƯCLN(2n+2;2n); (n ∈ N*) .
b. Tìm ƯCLN(3n+2 ;2n+1) với n ∈ N
a, Gọi d là ƯCLN(2n+2;2n)
=> 2 n + 2 ⋮ d 2 n ⋮ d ⇒ 2 n + 2 - 2 n = 2 ⋮ d
Mà d là ƯCLN nên d là số lớn nhất và cũng là ước của 2.
Vậy d = 2
b, Gọi ƯCLN(3n+2 ;2n+1) = d
Ta có: 3 n + 2 ⋮ d 2 n + 1 ⋮ d ⇒ 2 3 n + 2 ⋮ d 3 2 n + 1 ⋮ d
=>[2(3n+2) – 3(2n+1)] = 1 ⋮ d
Vậy d = 1
giup mình với mình cần gấp ,phải nộp bài cho thầy rùi
Câu1:tìm 2 số có tổng=66,ƯCLN=6,có 1 số chia hết cho 5
Câu2:biết (5n+6,8n+7)không nguyên tố cùng nhau.tìm ƯCLN của hai số
Câu3:tìm ƯCLN :
a,(76,1995)
b,(2n+1,3n+1) n thuộc N
c,(2n+3,n+1)
d,(\(\frac{n\left(n+1\right)}{2};2n+1\)
Câu4:tìm n thuộc N đẻ (7n+13;2n+4)=1
ai làm đúng và nhanh mình cho 5 tích luôn
Tìm ƯCLN của \(\frac{n\left(n+1\right)}{2}\)với \(2n+1\)
Gọi \(d=ƯCLN\left(\frac{n\left(n+1\right)}{2};2n+1\right)\)
=> \(\frac{n\left(n+1\right)}{2}⋮d\)
\(2n+1⋮d\)
=>\(n\left(n+1\right)⋮d\)
\(2n+1⋮d\)
=> \(n^2+n⋮d\)
\(2n+1⋮d\)
=>\(2.\left(n^2+n\right)⋮d\)
\(n.\left(2n+1\right)⋮d\)
=>\(2n^2+2n⋮d\)
\(2n^2+n⋮d\)
=>\(\left(2n^2+2n\right)-\left(2n^2+n\right)⋮d\)
=>\(n⋮d\)
=>\(2n⋮d\)
=> \(\left(2n+1\right)-2n⋮d\)
=> \(1⋮d\)
=> d=1
Vậy \(ƯCLN\left(\frac{n\left(n+1\right)}{2};2n+1\right)=1\)
1.Tìm ƯCLN của 2n -1 và 9n + 4 ( với n thuộc số tự nhiên).
2.Tìm ƯCLN của 7n + 3 và 8n - 1 ( với n thuộc số tự nhiên).
1) (2n-1;9n+4)=(2n-1;n+8)=(17;n+8)=1 hoặc 17
2) (7n+3;8n-1) =(7n+3;n-4)=(31;n-4)=1 hoặc 31
Tìm ƯCLN của các số sau:
a. 2n - 1 và 9n + 4
b. 4n + 3 và 5n + 1
c. n và n + 2
d. \(\frac{n\left(n+1\right)}{2}\) và 2n + 1
c) Gọi d là ƯCLN(n; n+2)
=> n chia hết cho d
=> n+2 chia hết cho d
<=> n+2 -n chia hết cho d
=> 2 chia hết cho d
=> d=1 hoăc d=2
=> ƯCLN(n;n+2) là 2
Vậy...