cho tam giác abc cân tại a có i là trung điểm của cạnh đáy bc gọi m là một điểm bất kì thuộc a b m và cm lần lượt cắt ac và ab tại e và d chứng tỏ rằng tứ giác bdec là hình thang cân xác định vị trí điểm m trên ad để bd = de = ec
Giúp với ạ
cho tam giác ABC cân tại A có I là trung điểm của BC. Gọi M là điểm bất kì trên AI, BM và CM lần cắt nhau AC và AB tại E và D
a, Chứng minh: Tứ giác BDEC là hình thang cân
b, Xác định vị trí của điểm M trên AI để BD=DE=EC
a)Vì I là trung điểm của BC
\(\Rightarrow\)AI là trung tuyến của \(\Delta ABC\)cân tại A
\(\Rightarrow AI\)là phân giác của \(\Delta ABC\)
\(\Rightarrow\widehat{BAM}=\widehat{CAM}\)
Vì \(\Delta ABC\)cân tại A \(\Rightarrow AB=AC\)
Xét \(\Delta BAM\)và \(\Delta CAM\),có:
\(\hept{\begin{cases}AB=AC\\\widehat{BAM}=\widehat{CAM}\\AM:chung\end{cases}}\)
\(\Rightarrow\Delta BAM=\Delta CAM\left(c.g.c\right)\)
\(\Rightarrow\widehat{ABM}=\widehat{ACM}\)(2 góc tương ứng)
Xét \(\Delta ABE\)và \(\Delta ACD\),có:
\(\hept{\begin{cases}\widehat{ABM}=\widehat{ACM}\\AB=AC\\\widehat{BAC}:chung\end{cases}}\)
\(\Rightarrow\Delta ABE=\Delta ACD\left(g.c.g\right)\)
\(\Rightarrow AE=AD\)(2 cạnh tương ứng)
\(\Rightarrow\Delta ADE\)cân tại A
\(\Rightarrow\widehat{ADE}=\frac{180^0-\widehat{BAC}}{2}\)
mà \(\Delta ABC\)cân tại A \(\Rightarrow\widehat{ABC}=\frac{180^0-\widehat{BAC}}{2}\)
\(\Rightarrow\widehat{ADE}=\widehat{ABC}\)
Mặt khác : \(\widehat{ADE}\)và \(\widehat{ABC}\)là 2 góc ở vị trí đồng vị
\(\Rightarrow DE//BC\)
\(\Rightarrow BDEC\)là hình thang
Ta có : \(\widehat{ABC}=\widehat{ACB}\)(do \(\Delta ABC\)cân tại A)
\(\Rightarrow BDEC\)là hình thang cân
b)Vì BDEC là hình thang cân \(\Rightarrow BD=CE\)
Ta có :BD=CE \(\Leftrightarrow\Delta BDE\)cân tại B
\(\Leftrightarrow\widehat{DBE}=\widehat{DEB}\)
mà \(\widehat{DEB}=\widehat{EBC}\)(do DE//BC)
\(\Leftrightarrow\widehat{DBE}=\widehat{EBC}\)
\(\Leftrightarrow BE\)là phân giác của \(\widehat{ABC}\)
hay \(BM\)là phân giác của \(\widehat{ABC}\)
Vậy khi M là 1 điểm nằm trên AI sao cho BM là phân giác của \(\widehat{ABC}\)thì BD=DE=CE
cho tam giác ABC cân tại A . Gọi M là điểm bất kỳ thuộc cạnh đáy BC . Từ M kẻ ME //AB ( E thuộc AC ) và MD // AC ( D thuộc AB )
a, chứng minh ADME là hình bình hành
b, chứng minh tam giác MEC cân và MD + ME = AC
c, xác định vị trí của M trên cạnh BC ADME là hình thoi
a) Xét tứ giác ADME có
AD//ME
DM//AE
Do đó: ADME là hình bình hành
b) Xét ΔEMC có \(\widehat{EMC}=\widehat{C}\left(=\widehat{B}\right)\)
nên ΔEMC cân tại E
Suy ra: EM=EC
Ta có: AE+EC=AC(E nằm giữa A và C)
mà AE=DM(AEMD là hình bình hành
mà EM=EC(cmt)
nên AC=MD+ME
1.Cho tam giác ABC cân tại A. Từ điểm D bất kì trên đáy BC kẻ 1 đường thẳng vuông góc với BC, cắt AB, AC lần lượt tại E, F. Vẽ các hình chữ nhật BDEH và CDFK. Gọi I, J lần lượt là tâm của các hcn BDEH vad CDFK. M là trung điểm của AD.
a) Cm rằng: trung điểm của HK là 1 điểm cố định không phụ thuộc vào vị trí của D trên BC.
b) Cm: 3 điểm I, M, J thẳng hàng và AD,HJ,KI đồng qui.
c) Khi D di chuyển trên BC thì M di chuyển trên đoạn thẳng nào?
2. Cho tam giác ABC cân tại A. Từ điểm M trên BC vẽ MP, MQ lần lượt vuông góc với AB, AC. Cm: MP+ MQ không phụ thuộc vào vị trí của M trên BC
Cho tam giác ABC cân tại A. Lấy D, E lần lượt là trung điểm của AB và AC. a) Chứng minh tứ giác BDEC là hình thang cần. b) Lấy I là trung điểm của BD. Qua I vẽ đường thẳng song song với AC cắt DE tại M, BC tại N. Chứng minh MN – EC. ©) Tứ giác BMDN là hình gi? Vì sao? d) . Tìm điều kiện của AABC đề tử giác BMDN là hình vuông?
a: Xét ΔABC có
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
Do đó: DE//BC
hay BDEC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BDEC là hình thang cân
#Toán_8 CÁC anh chị (các bạn ) giải giúp em mấy bài này với!
Bài 1: Tam giác ABC vuông cân tại C. Trên cạnh AC, BC lấy lần lượt các điểm P,Q sao cho AP=CQ. Từ P vẽ PM song song với BC. (M thuộc AB).
a) Chứng minh PCMQ là hình chữ nhật
b) Gọi I là trung điểm MQ. CHứng minh rằng khi P di chuyển trên cạnh AC; Q di chuyển trên cạnh BC thì I di chuyển trên một đoạn thẳng cố định.
Bài 2: CHo tam giác ABC. Gọi O là một điểm thuộc miền trong tam giác. M ,N,P,Q lần lượt là trung điểm các đoạn OB , OC, AC và AB.
a) CM MNPQ là hình bình hành
b) Xác định vị trí của O để MNPQ là hình chữ nhật.
Bài 3: Cho tam giác ABC (AB<AC) . Trên AB lấy điểm D. Trên AC lấy điểm E sao cho BD=CE. Gọi I ; K lần lượt là trung điểm của BC và DE. Kéo dài IK cắt AB; AC lần lượt tại M và N. CMR: tam giác AMN cân.
cho tam giác ABC cân tại A. gọi M là điểm bất kỳ thuộc cạnh đáy BC. Từ M kẻ ME // AB (E thuộc AC), và MD // AC ( D thuộc AB).
a) Chứng minh ADME là hình bình hành
b) Chứng minh tam giác MEC cân và MD + ME= AC
c) DE cắt AM tại N. Từ M vẽ MF//DE ( F thuộc AC), NF cắt ME tại G. Chứng minh G là trọng tâm của tam giác AMF
d) Xác định vị trí của M trên cạnh BC để ADME là hình thoi
Bài 6. Cho tam giác ABC cân tại A có AB = AC = 6 cm, BC = 5 cm. Gọi D, E lần lượt là trung điểm của AB và AC. Gọi P, Q lần lượt là trung điểm của BD và CE. a) Chứng minh rằng: tứ giác BCED là hình thang cân. b) Tính độ dài đoạn thẳng PQ.
a: Xét ΔABC có
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
Do đó: DE//BC
Xét tứ giác BDEC có DE//BC
nên BDEC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BDEC là hình thang cân
Cho tam giác ABC cân tại A, M là điểm bất kì nằm trên phân giác AH (H € BC).K là giao của AB và CM, i là giao của AC và BM.
a) Chứng minh rằng BKIC là hình thang cân
b) Hãy xác định vị trí của M sao cho BK=KI=IC
cho tam giác ABC cân tại A. gọi M là điểm bất kỳ thuộc cạnh đáy BC. Từ M kẻ ME // AB (E thuộc AC), và MD // AC ( D thuộc AB).
a) Chứng minh ADME là hình bình hành
b) Chứng minh tam giác MEC cân và MD + ME= AC
c) DE cắt AM tại N. Từ M vẽ MF//DE ( F thuộc AC), NF cắt ME tại G. Chứng minh G là trọng tâm của tam giác AMF
d) Xác định vị trí của M trên cạnh BC để ADME là hình thoi
Giúp tớ vs mn ơi. Camon nhiều ạ
1, Cho hình thang cân ABCD (AB //, AB < CD). Gọi M, N, P, Q lần lượt là trung điểm các đoạn thẳng AD, BD, AC, BC .
a, Chứng minh 4 điểm M, N, P, Q thẳng hàng .
b, Chứng minh tứ giác ABPN là hình thang cân.
c, Tìm một hệ thức liên hệ giữa AB và CD để ABPN là hình chữ nhật
2, Cho tam giác ABC. Gọi O là một điểm thuộc miền trong của tam giác M, N, P, Q lần lượt là trung điểm của các đoạn thẳng OB, OC, AC, AB .
a, Chứng minh tứ giác MNPQ là hình bình hành.
b, Xác định vị trí của điểm O Để tứ giác MNPQ là hình chữ nhật
3, Cho tam giác ABC Vuông cân tại C. Trên các cạnh AC , BC lấy lần lượt các điểm P, Q sao cho AP = CQ. Từ điểm B vẽ PM // BC ( M thuộc AB) Chứng minh tứ giác PCQM là hình chữ nhật
M.N VẼ HÌNH GIÚP LUÔN NHÉ. THANKS NHIỀU Ạ
Bài khá dài đó.
Sorry nhé mik mới lớp 6 ak nên ko bít, tha lỗi nha!
ý kiến gì thì nhắn tin cho mik mai 7g
pp, ngủ ngon!
Bạn Nữ hoàng Elsa lửa bn k biết thì đừng trả lời nhé
làm j phải căng bn với nhau mà chơi cho hòa đồng và đừng có chảnh nhé