Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Trọng Tấn
Xem chi tiết
Trần Thanh Phương
22 tháng 12 2018 lúc 21:14

Vì \(x^4\ge0\forall x;y^4\ge0\forall y\)

\(\Rightarrow P\ge0\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x^4+y^4=0\)

\(\Leftrightarrow\hept{\begin{cases}x^4=0\\y^4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}\Leftrightarrow}x=y=0}\)

Vậy \(P_{min}=0\Leftrightarrow x=y=0\)

Nguyễn Trọng Tấn
22 tháng 12 2018 lúc 21:44

Bạn ơi x,y nguyên dương nhé

Tuấn
23 tháng 12 2018 lúc 9:30

bạn xem lại đề nhé. có thêm đ/k gì của xy k ?

Nguyễn Thị Bích Ngọc
Xem chi tiết
Phạm Nguyễn Hùng Nguyên
20 tháng 12 2016 lúc 11:07

\(\frac{x^4\cdot y^4}{15}\\ \Leftrightarrow x^4\cdot y^4làB\left(15\right)\\ \Leftrightarrow\orbr{\begin{cases}x=0\\y=0\end{cases}}\)

Nguyễn Tuấn Hùng
Xem chi tiết
vivaswala
Xem chi tiết
vũ tiền châu
29 tháng 12 2017 lúc 12:20

giả sử x và y đều không chia hết cho 3 

\(\hept{\begin{cases}x^4\equiv1\left(mod3\right)\\y^4\equiv1\left(mod3\right)\end{cases}\Rightarrow x^4+y^4\equiv2\left(mod3\right)\Rightarrow\frac{x^4+y^4}{15}\notin N}\)

=> x và y đều phải chi hết cho 3 

tương tự sử dụng với mod 5, ( lũy thừa bậc 4 của 1 số luôn đồng dư với 0 hoạc 1 theo mod5 )

=> x và y đề phải chia hết cho 5 

=> x,y đều chia hết cho 15

mà số nguyên dương nhỏ nhất chia hết cho 15 là 15 => x=y=15

thay vào và tìm min nhé

Diệu Anh Hoàng
Xem chi tiết
Incursion_03
5 tháng 12 2018 lúc 22:32

ĐK: x khác 0

Từ\(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)

\(\Rightarrow x^2+2+\frac{1}{x^2}+x^2+xy+\frac{y^2}{4}=6+xy\)

\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+\left(x+\frac{y}{2}\right)^2=6+xy\)

Do VT > 0\(\Rightarrow6+xy\ge0\Rightarrow xy\ge6\)
Có A = 2016 + xy > 2016 + 6 = 2022

Incursion_03
29 tháng 1 2019 lúc 16:54

tth : Viết nhầm :V
Đoạn cuối \(6+xy\ge0\Rightarrow xy\ge-6\)

Có A = 2016 + xy > 2016 - 6 = 2010 !!!

Được rồi chứ gì -.- 

Incursion_03
29 tháng 1 2019 lúc 18:16

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+\frac{1}{x}=0\\x+\frac{y}{2}=0\end{cases}}\)

             \(\Leftrightarrow\hept{\begin{cases}x^2=1\\x=-\frac{y}{2}\end{cases}}\)

             \(\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\left(h\right)\hept{\begin{cases}x=-1\\y=2\end{cases}}\)OK ???

Namikaze Minato
Xem chi tiết
Nguyễn Thị Huyền Diệp
Xem chi tiết
Nguyễn Hoàng Minh
8 tháng 11 2021 lúc 16:25

TK: Tìm Min (x^4 + 1) (y^4 + 1) với x + y = căn10 ; x , y > 0 - Thanh Truc

Prissy
Xem chi tiết
Inequalities
6 tháng 1 2021 lúc 14:13

\(3=\left(x^2+\frac{1}{x^2}\right)+\left(x^2+\frac{y^2}{4}\right)\ge2+\left|xy\right|\Rightarrow\left|xy\right|\le1\Rightarrow-1\le xy\le1\Rightarrow Bantulmtiep\)

Khách vãng lai đã xóa
Phan Nghĩa
6 tháng 1 2021 lúc 13:01

dùng bđt cô si vào phần giả thiết đã cho nhé bạn , mình đang bận không tiện làm . Nếu cần thì tối rảnh mình làm cho

Khách vãng lai đã xóa
Phan Nghĩa
6 tháng 1 2021 lúc 14:21

à quên đề là số thực tihf làm sao cô si được :v chắc ép vô dạng bình phương 2 hoặc 3 số

Khách vãng lai đã xóa
Kiều Trang
Xem chi tiết
Hoắc Thiên Kình
23 tháng 6 2019 lúc 19:14

Áp dụng BĐT Cauchy-Schwarz , ta có : \(3.\left(x^4+y^4+z^4\right)\ge\left(x^2+y^2+z^2\right)^2\), do đó : \(0\ge\left(x^2+y^2+z^2\right)^2-7\left(x^2+y^2+z^2\right)+12\)

\(\Rightarrow x^2+y^2+z^2\ge3\), áp dụng BĐT Cauchy-Schwarz , ta lại có :

\(P=\frac{x^2}{y+2z}+\frac{y^2}{z+2x}+\frac{z^2}{x+2y}\)

\(=\frac{x^4}{x^2y+2zx^2}+\frac{y^4}{y^2z+2xy^2}+\frac{z^4}{z^2x+2yz^2}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2y+y^2z+z^2x+2\left(xy^2+yz^2+zx^2\right)}\)

Tiếp tục sử dụng BĐT Cauchy-Schwarz và kết hợp BĐT quen thuộc \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\), ta có :

\(x^2y+y^2z+z^2x\le\sqrt{\left(x^2+y^2+z^2\right).\left(x^2y^2+y^2z^2+z^2x^2\right)}\)

                                  \(\le\sqrt{\left(x^2+y^2+z^2\right).\left(\frac{\left(x^2+y^2+z^2\right)^2}{3}\right)}\)

                                   \(=\left(x^2+y^2+z^2\right).\sqrt{\frac{\left(x^2+y^2+z^2\right)}{3}}\)

Tương tự , chứng minh đc :

\(2.\left(xy^2+yz^2+zx^2\right)\le2\left(x^2+y^2+z^2\right)\sqrt{\frac{\left(x^2+y^2+z^2\right)}{3}}\)

\(\Rightarrow P\ge\frac{\left(x^2+y^2+z^2\right)^2}{3.\left(x^2+y^2+z^2\right)\sqrt{\frac{\left(x^2+y^2+z^2\right)}{3}}}\)

          \(=\sqrt{\frac{x^2+y^2+z^2}{3}}\)

           \(\ge1\)

Đẳng thức xảy ra khi và chỉ khi x = y = z = 1 nên giá trị nhỏ nhất của P là 1