Tìm giá trị nguyên dương nhỏ nhất của biểu thức :( khác 0)
\(\frac{x^4\times y^4}{15}\)
Tìm giá trị nguyên nhỏ nhất của biểu thức P=\(\frac{^{x^4+y^4}}{15}\) với x,y là các số nguyên dương
Vì \(x^4\ge0\forall x;y^4\ge0\forall y\)
\(\Rightarrow P\ge0\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x^4+y^4=0\)
\(\Leftrightarrow\hept{\begin{cases}x^4=0\\y^4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}\Leftrightarrow}x=y=0}\)
Vậy \(P_{min}=0\Leftrightarrow x=y=0\)
\(\frac{x^4\times y^4}{15}\)
Tìm giá trị nguyên dương nhỏ nhất ... giúp mk nha
\(\frac{x^4\cdot y^4}{15}\\ \Leftrightarrow x^4\cdot y^4làB\left(15\right)\\ \Leftrightarrow\orbr{\begin{cases}x=0\\y=0\end{cases}}\)
Cho M =3x^2y+4x^2y+\(\frac{1}{2}\)+x^2y
1)tìm cặp số nguyên (x;y) để M=240
2)chứng minh M và 2x^2y^3 cung dấu với mọi x;y khác 0
3) C/M M và -2x^4 khác dấu với mọi x khác 0
4) C/M 2x^4y^3 và -4xy ít nhất có một đơn thức có giá trị âm với mọi x,y khác 0
5)C/M M-2x^4y^3 và -4xy ít nhất có 1 đơn thức có giá trị dương với mọi x,y khác 0
6)tìm số h để kx^2y^2 và 2My nhận giá trị
a) âm với mọi x,y khác 0
b) dương vói mọi x,y khác 0
7) tìm giá trị nhỏ nhất của M+2
8) tìm giá trị lớn nhất của -M+2
9)tìm số tự nhiên A biêt \(\frac{15}{6}x^2y+\frac{15}{12}x^2y+\frac{15}{30}x^2y+.......+\frac{15}{a-\left(a+1\right)}\)
Cho x;y là các số nguyên dương sao cho : \(A=\frac{x^4+y^4}{15}\)cũng là số nguyên dương . Chứng minh x;y đều chia hết cho 3 và 5. từ đó tính giá trị nhỏ nhất của biểu thức A
giả sử x và y đều không chia hết cho 3
\(\hept{\begin{cases}x^4\equiv1\left(mod3\right)\\y^4\equiv1\left(mod3\right)\end{cases}\Rightarrow x^4+y^4\equiv2\left(mod3\right)\Rightarrow\frac{x^4+y^4}{15}\notin N}\)
=> x và y đều phải chi hết cho 3
tương tự sử dụng với mod 5, ( lũy thừa bậc 4 của 1 số luôn đồng dư với 0 hoạc 1 theo mod5 )
=> x và y đề phải chia hết cho 5
=> x,y đều chia hết cho 15
mà số nguyên dương nhỏ nhất chia hết cho 15 là 15 => x=y=15
thay vào và tìm min nhé
Cho x, y là các số thực khác 0 thỏa mãn: \(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức A= 2016+ xy
ĐK: x khác 0
Từ\(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)
\(\Rightarrow x^2+2+\frac{1}{x^2}+x^2+xy+\frac{y^2}{4}=6+xy\)
\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+\left(x+\frac{y}{2}\right)^2=6+xy\)
Do VT > 0\(\Rightarrow6+xy\ge0\Rightarrow xy\ge6\)
Có A = 2016 + xy > 2016 + 6 = 2022
tth : Viết nhầm :V
Đoạn cuối \(6+xy\ge0\Rightarrow xy\ge-6\)
Có A = 2016 + xy > 2016 - 6 = 2010 !!!
Được rồi chứ gì -.-
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+\frac{1}{x}=0\\x+\frac{y}{2}=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2=1\\x=-\frac{y}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\left(h\right)\hept{\begin{cases}x=-1\\y=2\end{cases}}\)OK ???
Giả sử x, y là các số dương thỏa mãn đẳng thức x + y = (căn bậc hai của 10). Tìm giá trị của x và y để biểu thức P = (x^4 + 10(y^4 + 1) đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất ấy
Gỉa sử x,y là các số dương thỏa mãn đẳng thức x+y=\(\sqrt{10}\). Tìm giá trị của x và y để biểu thức P=\(\left(x^4+1\right)\left(y^4+1\right)\) đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất ấy.
TK: Tìm Min (x^4 + 1) (y^4 + 1) với x + y = căn10 ; x , y > 0 - Thanh Truc
Cho x,y là hai số thực khác 0 thỏa mãn \(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=3\). Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(B=2020+xy\)
\(3=\left(x^2+\frac{1}{x^2}\right)+\left(x^2+\frac{y^2}{4}\right)\ge2+\left|xy\right|\Rightarrow\left|xy\right|\le1\Rightarrow-1\le xy\le1\Rightarrow Bantulmtiep\)
dùng bđt cô si vào phần giả thiết đã cho nhé bạn , mình đang bận không tiện làm . Nếu cần thì tối rảnh mình làm cho
à quên đề là số thực tihf làm sao cô si được :v chắc ép vô dạng bình phương 2 hoặc 3 số
cho x,y là các số thực dương thỏa mãn 3(x^4+y^4+z^4)-7(x^2+y^2+z^2)+12=0 . Tìm giá trị nhỏ nhất của biểu thức P=\(\frac{x^2}{y+2z}+\frac{y^2}{z+2x}+\frac{z^2}{x+2y}\)
Áp dụng BĐT Cauchy-Schwarz , ta có : \(3.\left(x^4+y^4+z^4\right)\ge\left(x^2+y^2+z^2\right)^2\), do đó : \(0\ge\left(x^2+y^2+z^2\right)^2-7\left(x^2+y^2+z^2\right)+12\)
\(\Rightarrow x^2+y^2+z^2\ge3\), áp dụng BĐT Cauchy-Schwarz , ta lại có :
\(P=\frac{x^2}{y+2z}+\frac{y^2}{z+2x}+\frac{z^2}{x+2y}\)
\(=\frac{x^4}{x^2y+2zx^2}+\frac{y^4}{y^2z+2xy^2}+\frac{z^4}{z^2x+2yz^2}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2y+y^2z+z^2x+2\left(xy^2+yz^2+zx^2\right)}\)
Tiếp tục sử dụng BĐT Cauchy-Schwarz và kết hợp BĐT quen thuộc \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\), ta có :
\(x^2y+y^2z+z^2x\le\sqrt{\left(x^2+y^2+z^2\right).\left(x^2y^2+y^2z^2+z^2x^2\right)}\)
\(\le\sqrt{\left(x^2+y^2+z^2\right).\left(\frac{\left(x^2+y^2+z^2\right)^2}{3}\right)}\)
\(=\left(x^2+y^2+z^2\right).\sqrt{\frac{\left(x^2+y^2+z^2\right)}{3}}\)
Tương tự , chứng minh đc :
\(2.\left(xy^2+yz^2+zx^2\right)\le2\left(x^2+y^2+z^2\right)\sqrt{\frac{\left(x^2+y^2+z^2\right)}{3}}\)
\(\Rightarrow P\ge\frac{\left(x^2+y^2+z^2\right)^2}{3.\left(x^2+y^2+z^2\right)\sqrt{\frac{\left(x^2+y^2+z^2\right)}{3}}}\)
\(=\sqrt{\frac{x^2+y^2+z^2}{3}}\)
\(\ge1\)
Đẳng thức xảy ra khi và chỉ khi x = y = z = 1 nên giá trị nhỏ nhất của P là 1