Chứng tỏ rằng (20165 + 20166) chia hết cho 2017
Chứng tỏ rằng có số dạng 19781978...1978000...000 chia hết cho 2017
a)cho biết 2a + b chia hết cho 6 chứng tỏ rằng 6a +3b chia het cho 6 . Diều ngược lại có đúng ko?
b)cho biết 2a +3b chia hết cho 15,chứng tỏ rằng 9a +6b chia hết cho 15?
Chứng tỏ rằng số có dạng abcabc lúc nào cũng chia hết cho 11, chia hết cho 91.
Bài 1 : Chứng tỏ rằng
a) 94260 - 35137 chia hết cho 5
b) 995 - 984 + 973 - 962 chia hết cho2 và 5
Bài 2 : Cho n thuộc N . Chưng tỏ rằng 5n - 1 chia hết cho 4
Bài 3 : Cho n thuộc N . Chứng tỏ rằng n2 + n + 1 không chia hết cho cả 2 và 5
\(1;a,942^{60}-351^{37}\)
\(=\left(942^4\right)^{15}-\left(....1\right)\)
\(=\left(....6\right)^{15}-\left(...1\right)\)
\(=\left(...6\right)-\left(...1\right)=\left(....5\right)⋮5\)
\(b,99^5-98^4+97^3-96^2\)
\(=\left(...9\right)-\left(...6\right)+\left(...3\right)-\left(...6\right)\)
\(=\left(...6\right)-\left(...6\right)=\left(...0\right)⋮2;5\)
\(2;5n-n=4n⋮4\)
Chứng tỏ rằng:
A=2+22+23+24+...+260 chia hết cho 7
Số số hạng của A:
60 - 1 + 1 = 60 (số)
Do 60 ⋮ 3 nên ta có thể nhóm các số hạng của A thành từng nhóm mà mỗi nhóm có 3 số hạng như sau:
A = (2 + 2² + 2³) + (2⁴ + 2⁵ + 2⁶) + ... + (2⁵⁸ + 2⁵⁹ + 2⁶⁰)
= 2.(1 + 2 + 2²) + 2⁴.(1 + 2 + 2²) + ... + 2⁵⁸.(1 + 2 + 2²)
= 1.7 + 2⁴.7 + ... + 2⁵⁸.7
= 7.(1 + 2⁴ + ... + 2⁵⁸) ⋮ 7
Vậy A ⋮ 7
Chứng tỏ rằng:
A+2b chia hết cho 3 khi va chỉ khi 2a+b chia hết cho 3
Nếu : a+2b chia hết cho 3
=>5.(a+2b) chia hết cho 3
=>5a+10b chia hết cho 3
Mà : 3a và 9 b đều chia hết cho 3
=> 5a+10b-3a-9b chia hết cho 3 hay 2a+b chia hết cho 3 (1)
Nếu : 2a+b chia hết cho 3
Có 3a + 9b đều chia hết cho 3 => 2a+b+3a+9b chia hết cho 3 hay 5a+10b chia hết cho 3
=>5.(a+2b) chia hết cho 3
=> a+2b chia hết cho 3 ( vì 5 và 3 là 2 số nguyên tố cùng nhau ) (2)
Từ (1) và (2) => ĐPCM
Bài 1 . Chứng tỏ rằng : ( n + 2 ) chia hết cho ( n - 2 )
đề của bạn hơi có vấn đề.Nếu n=5 thì n+2=7,n-2=3.
7 không chia hết cho 3
Chứng tỏ rằng hiệu 1983^1983 - 1917^1917 chia hết cho 10
ta có 19831983-19171917=\(\left(1983-1917\right).\left(1983+1917\right)\)
=\(66.\left(3900\right)\)=66.39.100 chia hết cho 10
Vậy ........
\(1983^{1983}=\left(1983^4\right)^{495}.1983^3=\overline{....1}\cdot\overline{....7}=\overline{....7}\)(1)
\(1917^{1917}=\left(1917^4\right)^{479}\cdot1917=\overline{....1}\cdot1917=\overline{....7}\)(2)
Trừ vế theo vế \(\Rightarrow\left(1\right)-\left(2\right)=\overline{......0}⋮10\)
Vậy...
Chứng tỏ rằng số có dạng aaa bao giờ cũng chia hết cho 37.
Ta có: aaa = 100.a + 10.a + a = (100 + 10 + 1).a = 111.a = 3.37.a ⋮ 37 (điều phải chứng minh)