cho tam giác ABC các đường cao BD và CE. Chứng minh a) nếu AB=AC thì BD=CE. b) nếu BD= CE thì AB=AC
Cho tam giác ABC với các đường trung tuyến BD và CE. cmr
a. Nếu AB = AC thì BD = CE
b .Nếu BD = CE thì AB = AC
a) \(AB=AC\Rightarrow\frac{1}{2AB}=\frac{1}{2AC}\) và tam giác ABC cân tại A
=> Góc A = Góc B
\(\frac{1}{2AB}=\frac{1}{2AC}\Rightarrow BE=CD\)
Xét tam giác BDC và tam giác CEB có:
B = C
Cạnh BC chung
BE = CD
=> tam giác BDC= tam giác CEB (g . c . g) => BD = CE
b. Gọi G là trọng tâm của tam giác \(ABC\Rightarrow BG=\frac{2}{3BD},CG=\frac{2}{3CD},DG=\frac{1}{3BD},EG=\frac{1}{3}CE\)
BD = CE
=> BG = CG, DG = EG
Góc G1 = G2 (đối đỉnh)
=> tam giác EGB = tam giác DGC (c . g . c)
\(\Rightarrow BE=CD\text{ hay }\frac{1}{2AB}=\frac{1}{2AC}\Rightarrow AB=AC\)
a,Vì AB=AC => Tam giác ABC cân ở A => Góc ABC=ACB (1) Ta có:E là TĐ của AB;D là TĐ của AC =>ED là đường trung bình của tam giác ABC=>ED//BC=>EDCB là hình thang (2) Từ (1) và (2)=>EDCB là hình thang cân =>EC=BD(đpcm) P/S:Còn câu b bạn giải gần tương tự
Cho Tam giác ABC có AB = AC và A = 90 độ . Qua A kẻ đường thẳng d ko cắt cạnh BC của tam giác ABC. Từ B và C kẻ BD và CE vuông góc với d (D và E thuộc d ) a) Chứng minh Tam giác BDA = Tam giác AEC. b) chứng minh BD + CE=DE. c) nếu đường thẳng d cắt cạnh BC của Tam giác ABC thì BD, CE và DE đc liên hệ bới công thức nào
Cho Tam giác ABC có AB = AC và A = 90độ . Qua A kẻ đường thẳng d ko cắt cạnh BC của tam giác ABC. Từ B và C kẻ BD và CE vuông góc với d (D và E thuộc d ) a) Chứng minh Tam giác BDA = Tam giác AEC. b) chứng minh BD + CE=DE. c) nếu đường thẳng d cắt cạnh BC của Tam giác ABC thì BD, CE và DE đc liên hệ bới công thức nào
Cho tam giác ABC nhọn, AB>AC, phân giác BD và CE cắt nhau tại I.a)tính các góc của tam giác DIE nếu góc A= 60 độ,b) gọi giao điểm cña BD và CE với đường cao AH của tam giác ABC lần lượt là M và N .chứng minh: BM > MN + NC.
nói bậy bạn ơi chưa khi nào đọc nội quy à
Cho tam giác nhọn ABC, vẽ các đường cao BD (De AC) và CE (E= AB). Biết AB = 10cm; AC = 12cm, BD = 8cm a/ Chứng minh: ABD AACE. b/ Tính độ dài đoạn thăng CE. c/ Tính diện tích AADE.
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc DAB chung
=>ΔADB đồng dạng với ΔAEC
b: ΔADB đồng dạng với ΔAEC
=>AD/AE=AB/AC=DB/EC
=>8/CE=10/12=5/6
=>CE=8:5/6=8*6/5=9,6cm
Cho tam giác ABC nhọn có AB>AC. Kẻ các đường cao BD,CE. Lấy điểm F thuộc AB sao cho AF=AC. Kẻ FI vuông góc ở I.
a) so sánh FI và CE
b) kẻ FH vuông góc BD ở G. Chứng minh FI=HD
c) chứng minh AB-AC>BD-CE.
Bài 5. Cho tam giác ABC nhọn, 𝐵̂>𝐶̂, đường cao BD và CE. Trên AC lấy điểm M sao cho AM = AB. Vẽ MN vuông góc AB, MF vuông góc CE
a) Chứng minh rằng: MN = EF
b) Chứng mịnh rằng: CM = AC - AB
c) Chứng minh rằng: AC – AB > CE – BD.
Bài 5. Cho tam giác ABC nhọn, 𝐵̂>𝐶̂, đường cao BD và CE. Trên AC lấy điểm M sao cho AM = AB. Vẽ MN vuông góc AB, MF vuông góc CE
a) Chứng minh rằng: MN = EF
b) Chứng mịnh rằng: CM = AC - AB
c) Chứng minh rằng: AC – AB > CE – BD.
Cho △nhọn ABC( AB < AC). Các đường cao BD và CE lấy F∈AB sao cho AE= AC. Kẻ KI⊥AC
a) So sánh FI và CE
b) Kẻ FH ⊥BD. Chứng minh FI= HD
c) Chứng minh AB- AC< BD- CE