sử dụng tính chất phân phối của phép nhân đối vs phép cộng để đưa các tích sau về dạng tổng
1)(a+b)(a+b) 2)(a-b)^2
3)(a+b)(a-b) 4)(a+b)^3
5)(a-b)^3 6)(a+b)(a^2-ab+b^2)
Sử dụng tính chất phân phối của phép nhân đối với phép cộng đưa các tích sau về dạng tổng:\(\left(a-b\right)^3\)
Sử dụng tính chất phân phối của phép nhân đối với phép cộng đưa tích sau về dạng tổng\(\left(a+b\right).\left(a^2-ab+b^2\right)\)
Cái này lên lớp 8 mới hok nhưng bạn chịu khó hiểu nha :
\(\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=a^3-a^2b+ab^2+a^2b-ab^2+b^3\)
Ta thấy dấu - vs dấu + triệt tiêu nha còn :
\(=a^3+b^3\)
Thế là xong
Ủng hộ mik nha
Thnaks
sử dụng tính chất phân phối của phép nhân và phép cộng để đưa các tích sau về dạng tổng
a. (a - b)2
b. (a - b)3
\(\left(a-b\right)^2=\left(a-b\right)\left(a-b\right)=\left(a-b\right).a-\left(a-b\right).b=a^2-ab-\left(ab-b^2\right)=a^2-ab-ab+b^2=a^2-2.ab+b^2\)
\(\left(a-b\right)^3=\left(a-b\right)^2.\left(a-b\right)=\left(a^2-2.ab+b^2\right).\left(a-b\right)=\left(a^2-2ab+b^2\right).a-\left(a^2-2ab+b^2\right).b\)\(=\left(a^3-2.a^2.b+a.b^2\right)-\left(b.a^2-2.b^2.a+b^3\right)=a^3-2.a^2.b+a.b^2-b.a^2+2.b^2.a-b^3=a^3-3.a^2.b+3.b^2.a-b^3\)
Sử dụng tính chất phân phối của phép nhân đối vs phép cộng đưa cách tích sau về dạng tổng:
1) ( a+ b).( a+b)
2) ( a - b)2
3) ( a+b).(a-b)
4) ( a+b)3
5) ( a-b)3
6) ( a+b).(a2-ab+b2)
7) (a-b).( a2+ab+b2)
sử dụng tính chất phân phối của phép nhân đối với phép cộng đưa cách tính sau về dạng tổng:
(a-b)^3
(a+b).(a^2-ab+b^2)
(a-b).(a^2+ab+b^2)
cảm ơn tất cả mọi người nhé^^
minh mong câu trả lời của bạn nhất đó Ngọc Vĩ ơi^^
Sử dụng tính chất phân phối của phép nhân đối với phép cộng đưa các tích sau về dạng tổng:
1) (a+b).(a+b)
2) (a-b)2
3) (a+b).(a-b)
4) (a+b)3
5) (a-b)3
6) (a+b).(a2-ab+b2)
7) (a-b).(a2+ab+b2)
1) (a+b).(a+b)=(a+b)2=a2+2ab+b2
2) (a-b)2=a2-2ab+b2
3) (a+b).(a-b)=a2-b2
4) (a+b)3=a3+3a2b+3ab2+b3
5) (a-b)3=a3-3a2b+3ab2-b3
6) (a+b).(a2-ab+b2)=a3+b3
7) (a-b).(a2+ab+b2)=a3-b3
mấy cái ày là hằng đẳng thức đáng nhớ mà
lấy a+a b+b
lấy b^2-a
lấy a.b b.a
a^3 +b
b^3-a
hai câu cuối thì mình k biết
Sử dụng tính chất phân phối của phép nhân đối với phép cộng đưa ra các tích sau về dạng tổng:
1) (a + b).(a + b)
2) (a - b)2
3) (a + b).(a - b)
4) (a + b )3
5) (a - b)3
6) (a + b).(a2 - ab + b2)
7) (a - b),(a2 + ab + b2)
1) \(\left(a+b\right).\left(a+b\right)=a.\left(a+b\right)+b.\left(a+b\right)=a^2+ab+b^2+ab\)
2) \(\left(a-b\right)^2=\left(a-b\right).\left(a-b\right)=a.\left(a-b\right)-b.\left(a-b\right)=a^2-ab-ab+b^2\)
\(=a^2+\left(-ab\right)+\left(-ab\right)+b^2\)
3) \(\left(a+b\right).\left(a-b\right)=a.\left(a-b\right)+b.\left(a-b\right)=a^2-ab+ab-b^2=a^2-b^2\)
\(=a^2+-\left(b^2\right)\)
4) \(\left(a+b\right)^3=\left(a+b\right).\left(a+b\right).\left(a+b\right)=a.\left(a+b\right).\left(a+b\right)+b.\left(a+b\right).\left(a+b\right)\)
\(=\left[a.\left(a+b\right)\right].\left(a+b\right)+\left[b.\left(a+b\right)\right].\left(a+b\right)=\left(a^2+ab\right).\left(a+b\right)+\left(ab+b^2\right).\left(a+b\right)\)
\(=a^2.\left(a+b\right)+ab.\left(a+b\right)+ab.\left(a+b\right)+b^2.\left(a+b\right)\)
\(=a^3+a^2b+a^2b+ab^2+a^2b+ab^2+b^2a+b^3\)
5) \(\left(a-b\right)^3=\left(a-b\right).\left(a-b\right).\left(a-b\right)=a.\left(a-b\right).\left(a-b\right)-b.\left(a-b\right).\left(a-b\right)\)
\(=\left(a^2-ab\right).\left(a-b\right)-\left(ba-b^2\right).\left(a-b\right)\)
\(=a^2.\left(a-b\right)-ab.\left(a-b\right)-ba.\left(a-b\right)+b^2.\left(a-b\right)\)
\(=a^3-a^2b-a^2b+ab^2-ba^2+b^2a-ba^2+b^2a-b^3\)
6) \(\left(a+b\right).\left(a^2-ab+b^2\right)=a.\left(a^2-ab+b^2\right)+b.\left(a^2-ab+b^2\right)\)
\(=a^3-a^2b+ab^2+ba^2-ab^2+b^3\)
\(=a^3+b^3\)
7) \(\left(a-b\right).\left(a^2+ab+b^2\right)=a.\left(a^2+ab+b^2\right)-b.\left(a^2+ab+b^2\right)\)
\(=a^3+a^2b+ab^2-ba^2-ab^2-b^3\)
\(=a^3-b^3\)
1 a^2+2ab+b^2
2 a^2-2ab+b^2
3 a^2-b^2
4 a^3+3a^2b+3ab^2+b^3
5 a^3-3a^2b+3ab^2-b^3
6 a^3+b^3
7 a^3-b^3
\(1)\left(a+b\right)\left(a+b\right)=\left(a+b\right)^2=a^2+2ab+b^2\)
\(2)\left(a-b\right)^2=a^2-2ab+b^2\)
\(3)\left(a+b\right)\left(a-b\right)=a^2-b^2\)
\(4)\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3\)
\(5)\left(a-b\right)^3=a^3-3a^2b+3ab^2-b^3\)
\(6)\left(a+b\right)\left(a^2-ab+b^2\right)=a^3+b^3\)
\(7)\left(a-b\right)\left(a^2+ab+b^2\right)=a^3-b^3\)
Sử dụng tính chất phân phối giữa phép cộng và phép nhân để đưa các tích sau về tổng :
a) ( a + b ) . ( a - b )
b) ( a + b ) 3
c) ( a + b ) . ( a2 - ab + b2 )
d) ( a - b ) . ( a2 + ab + b2 )
e) ( a - b )3
a) \(\left(a+b\right).\left(a-b\right)=a.\left(a-b\right)+b.\left(a-b\right)=a^2-ab+ba-b^2\)\(=a^2-b^2\)
b) \(\left(a+b\right)^3=\left(a+b\right).\left(a+b\right).\left(a+b\right)=a.\left(a+b\right).\left(a+b\right)+b.\left(a+b\right).\left(a+b\right)\)
\(=\left(a^2+ab\right).\left(a+b\right)+\left(ba+b^2\right).\left(a+b\right)\)\(=a^2.\left(a+b\right)+ab.\left(a+b\right)+ba.\left(a+b\right)+b^2.\left(a+b\right)\)
\(=a^3+a^2b+a^2b+ab^2+ba^2+b^2a+b^2a+b^3\)\(=a^3+3a^2b+3ab^2+b^3\)
c) \(\left(a+b\right).\left(a^2-ab+b^2\right)=a.\left(a^2-ab+b^2\right)+b.\left(a^2-ab+b^2\right)\)
\(=a^3-a^2b+ab^2+ba^2-ab^2+b^3\)\(=a^3+b^3\)
d) \(\left(a-b\right).\left(a^2+ab+b^2\right)=a.\left(a^2+ab+b^2\right)-b.\left(a^2+ab+b^2\right)\)
\(=a^3+a^2b+ab^2-ba^2-ab^2-b^3\)\(=a^3-b^3\)
e) \(\left(a-b\right)^3=\left(a-b\right).\left(a-b\right).\left(a-b\right)=a.\left(a-b\right).\left(a-b\right)-b.\left(a-b\right).\left(a-b\right)\)
\(=\left(a^2-ab\right).\left(a-b\right)-\left(ba-b^2\right).\left(a-b\right)\)\(=a^2.\left(a-b\right)-ab.\left(a-b\right)-ba.\left(a-b\right)+b^2.\left(a-b\right)\)
\(=a^3-a^2b-a^2b+ab^2-ba^2+b^2a+b^2a-b^3\)
\(=a^3-3a^2b+3ab^2-b^3\)
1) (a+b).(a+b)=(a+b)2=a2+2ab+b2
2) (a-b)2=a2-2ab+b2
3) (a+b).(a-b)=a2-b2
4) (a+b)3=a3+3a2b+3ab2+b3
5) (a-b)3=a3-3a2b+3ab2-b3
6) (a+b).(a2-ab+b2)=a3+b3
7) (a-b).(a2+ab+b2)=a3-b3
a) ( a + b ) . ( a - b )
=a2-b2
b) ( a + b ) 3
=a3+3a2b+3ab2+b3
c) ( a + b ) . ( a2 - ab + b2 )
=a3+b3
d) ( a - b ) . ( a2 + ab + b2 )
=a3-b3
e) ( a - b )3
==a3-3a2b+3ab2-b3
Sử dụng tính chất phân phối của phép nhân đối với phép cộng đưa cách tính sau về dạng tổng :
1) (a+b)3 3) (a+b).(a2-ab+b2)
2) (a-b)3 4) (a-b).(a2+ab+b2)
1) (a+b)3=(a+b)(a+b)(a+b)=(a2+ab+ab+b2)(a+b)=(a2+2ab+b2)(a+b)(a3+2a2b+ab2)+(a2b+2ab2+b3)=a3+2a2b+ab2+a2b+2ab2+b3
=a3+3a2b+3ab2+b3
2)(a-b)3=(a-b)(a-b)(a-b)=(a2-ab-ab+b2)(a-b)=(a2-2ab+b2)(a-b)=(a3-2a2b+ab2)-(a2b-2ab2+b3)=a3-2a2b+ab2-a2b+2ab2-b3=a3-3a2b+3ab2-b3
3) (a+b).(a2-ab+b2)=a3-a2b+ab2+a2b-ab2+b3=a3+b3
4) (a-b).(a2+ab+b2)=(a3+a2b+ab2)-(a2b+ab2+b3)=a3+a2b+ab2-a2b-ab2-b3=a3-b3