cho x^4+y^4+1=xy(1-2xy)+4.tìm gtln-nn của ; xy
1,cho x+y+4=0
tìm GTLN của A= 2(x3+y3)+3(x2+y2)+10xy
2,cho x4+y4-7=xy(3-2xy)
tìm GTNN của :M=xy
Cho x,y thỏa 2(x2 +y2) = xy+1
Tìm GTLN của p= \(\frac{x^4+y^4}{2xy+1}\)
1.Cho x,y > 0 và x^2 + y^2 = 1
Tìm GTNN của \(A=\frac{-2xy}{1+xy}\)
2.cho các số dương x, y,z thỏa man x+y+z=4. Chứng minh \(\frac{1}{xy}+\frac{1}{xz}>=1\)
3.3)cho các số x, y không âm thỏa mãn x+y=1 . tìm gtnn ,gtln của A =x^2+y^2
1. \(1=x^2+y^2\ge2xy\Rightarrow xy\le\frac{1}{2}\)
\(A=-2+\frac{2}{1+xy}\ge-2+\frac{2}{1+\frac{1}{2}}=-\frac{2}{3}\)
max A = -2/3 khi x=y=\(\frac{\sqrt{2}}{2}\)
\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}.\frac{4}{y+z}=\frac{4}{\left(4-t\right)t}=\frac{4}{4-\left(t-2\right)^2}\ge1\) với t = y+z => x =4 -t
\(A=x^2+y^2=\frac{\left(1^2+1^2\right)\left(x^2+y^2\right)}{2}\ge\frac{\left(1.x+1.y\right)^2}{2}=\frac{1}{2}\)A min = 1 khi x =y = 1/2
\(\sqrt{A}=\sqrt{x^2+y^2}\le\sqrt{x^2}+\sqrt{y^2}=x+y=1\)( \(\sqrt{a+b}\le\sqrt{a}+\sqrt{b}\))
=> A\(\le1\) => Max A = 1 khi x =0;y =1 hoặc x =1 ; y =0
Cho hai số thực dương x,y thõa mãn : x^4+y^4+1/xy=xy + 2
Tìm GTLN VÀ GTNN của P=xy
1. Cho x,y thỏa mãn: x2 + 5y2 - 4xy + 2y = 3. Tìm x,y sao cho x đạt GTLN
2. Cho x,y thỏa mãn: 3x2 + y2 + 2xy + 4 = 7x + 3y
a) Tìm GTNN, GTLN của biểu thức P = x + y
b) Tìm GTNN, GTLN của x
3. Cho x,y thỏa mãn: x2 + 2y2 + 2xy + 7x + 7y + 10 = 0. Tìm GTLN, GTNN của S = x + y
cho x y z > 0 và xyz=1. tìm gtln của \(P=\frac{xy}{x^4+y^4+xy}+\frac{yz}{y^4+z^4+yz}+\frac{zx}{z^4+x^4+zx}\)
Bài 1: Tìm min max
x^2 +2xy +7(x+y) +2y^2 +10 = 0
Bài 2 : cho x, y không âm thỏa mãn x+y = 4 tìm GTNN GTLN
p= x^4y+xy^4+x^3+y^3-5(x^2 + y ^2 + 14x^2y^2 -58xy +6
--------- Giúp nha !
Tìm GTLN và GTNN của P=2x2-xy-y2 với x,y thỏa mãn x2+2xy+3y2=4
1. Cho x,y thỏa mãn: x2 + 5y2 - 4xy + 2y = 3. Tìm x,y sao cho x đạt GTLN
2. Cho x,y thỏa mãn: 3x2 + y2 + 2xy + 4 = 7x + 3y
a) Tìm GTNN, GTLN của biểu thức P = x + y
b) Tìm GTNN, GTLN của x
3. Cho x,y thỏa mãn: x2 + 2y2 + 2xy + 7x + 7y + 10 = 0. Tìm GTLN, GTNN của S = x + y
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)