Cho \(\frac{3a^2-b^2}{a^2-b^2}\)=\(\frac{3}{4}\).Tính \(\frac{a}{b}\)
Cho \(\frac{3a^2-b^2}{a^2+b^2}=\frac{3}{4}\). Tính \(\frac{a}{b}\)
\(\frac{3a^2-b^2}{a^2+b^2}\)=\(\frac{3}{4}\)
=>4.(3a2-b=2)=3.(a2+b2)
4.3a2-4.b2=3.a2+3.b2
12a2-4b2=3a2+3b2
12a2-3a2=4b2+3b2
9a2=7b2
\(\frac{a^2}{b^2}\)=\(\frac{7}{9}\)
=>\(\frac{a}{b}\)=\(\sqrt{\frac{7}{9}}\)
đặt a/b=t
chia cả tử mấu cho b^2
\(\Leftrightarrow\frac{3t^2-1}{t^2+1}=\frac{3}{4}\)\(12t^2-4=3t^2+3\Rightarrow9t^2=7\Rightarrow\orbr{\begin{cases}\frac{a}{b}=t=\frac{\sqrt{7}}{3}\\\frac{a}{b}=t=\frac{-\sqrt{7}}{3}\end{cases}}\)
a/b=
cho \(\frac{3a^2-b^2}{a^2+b^2}=\frac{3}{4}\).TÍnh \(\frac{a}{b}\)
Cho \(\frac{3a^2-b^2}{a^2+b^2}=\frac{3}{4}\) Tính \(\frac{a}{b}\)
Cho
\(\frac{3a^2-b^2}{a^2+b^2}=\frac{3}{4}\). Tính \(\frac{a}{b}\)
\(\frac{3a^2-b^2}{a^2+b^2}\)=\(\frac{3}{4}\)
=>4(3a2-b2)=3(a2+b2)
=>12a2-4b2=3a2+3b2
=>12a2-3a2=4b2+3b2
=>9a2=7b2
=>\(\frac{a^2}{b^2}\)=\(\frac{7}{9}\)
=>\(\frac{a}{b}\)=\(\sqrt{\frac{7}{9}}\)
Cho\(\frac{3a^2-b^2}{a^2+b^2}=\frac{3}{4}\). Tính\(\frac{a}{b}\)
A, Cho 3 số a;b;c thỏa mãn \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)và 3a+2b-c khác 0 . Tính giá trị của biểu thức: \(B=\frac{a+7b-2c}{3a+2b-c}\)
B, Cho 3 số a;b;c thỏa mãn \(\frac{1}{2a-1}=\frac{2}{3b-1}=\frac{3}{4c-1}\)và 3a+2b-c=4 . Tìm các số a;b;c
a, Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\)\(\Rightarrow a=2k\); \(b=3k\); \(c=5k\)
Ta có: \(B=\frac{a+7b-2c}{3a+2b-c}=\frac{2k+7.3k-2.5k}{3.2k+2.3k-5k}=\frac{2k+21k-10k}{6k+6k-5k}=\frac{13k}{7k}=\frac{13}{7}\)
b, Ta có: \(\frac{1}{2a-1}=\frac{2}{3b-1}=\frac{3}{4c-1}\)\(\Rightarrow\frac{2a-1}{1}=\frac{3b-1}{2}=\frac{4c-1}{3}\)
\(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{1}=\frac{3\left(b-\frac{1}{3}\right)}{2}=\frac{4\left(c-\frac{1}{4}\right)}{3}\) \(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{12}=\frac{3\left(b-\frac{1}{3}\right)}{2.12}=\frac{4\left(c-\frac{1}{4}\right)}{3.12}\)
\(\Rightarrow\frac{\left(a-\frac{1}{2}\right)}{6}=\frac{\left(b-\frac{1}{3}\right)}{8}=\frac{\left(c-\frac{1}{4}\right)}{9}\)\(\Rightarrow\frac{3\left(a-\frac{1}{2}\right)}{18}=\frac{2\left(b-\frac{1}{3}\right)}{16}=\frac{\left(c-\frac{1}{4}\right)}{9}\)
\(\Rightarrow\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-\left(c-\frac{1}{4}\right)}{18+16-9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-c+\frac{1}{4}}{25}\)
\(=\frac{\left(3a+2b-c\right)-\left(\frac{3}{2}+\frac{2}{3}-\frac{1}{4}\right)}{25}=\left(4-\frac{23}{12}\right)\div25=\frac{25}{12}\times\frac{1}{25}=\frac{1}{12}\)
Do đó: +) \(\frac{a-\frac{1}{2}}{6}=\frac{1}{12}\)\(\Rightarrow a-\frac{1}{2}=\frac{6}{12}\)\(\Rightarrow a=1\)
+) \(\frac{b-\frac{1}{3}}{8}=\frac{1}{12}\)\(\Rightarrow b-\frac{1}{3}=\frac{8}{12}\)\(\Rightarrow b=1\)
+) \(\frac{c-\frac{1}{4}}{9}=\frac{1}{12}\)\(\Rightarrow c-\frac{1}{4}=\frac{9}{12}\)\(\Rightarrow c=1\)
Cho \(\frac{3a^2-b^2}{a^2+b^2}=\frac{3}{4}\). Tính \(\frac{a}{b}\)
Cho \(\frac{3a^2-b^2}{a^2+b^2}=\frac{3}{4}\) . Tính \(\frac{a}{b}\)
\(\frac{3a^2-b^2}{a^2+b^2}=\frac{3\left(\frac{a}{b}\right)^2-1}{\left(\frac{a}{b}\right)^2+1}=\frac{3}{4}\Leftrightarrow4.3\left(\frac{a}{b}\right)^2-4=3.\left(\frac{a}{b}\right)^2+3\)
\(\Leftrightarrow9.\left(\frac{a}{b}\right)^2=7\Leftrightarrow\left(\frac{a}{b}\right)^2=\frac{7}{9}\Leftrightarrow\int^{\frac{a}{b}=\frac{\sqrt{7}}{3}}_{\frac{a}{b}=-\frac{\sqrt{7}}{3}}\)
Cho \(\frac{3a^2-b^2}{a^2+b^2}=\frac{3}{4}\)Tính \(\frac{a}{b}\)
Suy ra:
\(\left(3a^2-b^2\right)4=\left(a^2+b^2\right)3\)
=> \(12a^2-4b^2=3a^2+3b^2\)
=> \(12a^2-3a^2=3b^2+4b^2\)
=> \(9a^2=7b^2=>\frac{a^2}{b^2}=\left(\frac{a}{b}\right)^2=\frac{7}{9}=>\frac{a}{b}=\sqrt{\frac{7}{9}}\)
Vay: \(\frac{a}{b}=\sqrt{\frac{7}{9}}\)