phân số nào lớn nhất:
\(\frac{99}{100}\),\(\frac{100}{101}\),\(\frac{101}{102}\)
Tính \(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{102}}{\frac{101}{1}+\frac{100}{2}+\frac{99}{3}+...+\frac{1}{101}}\)
Tính \(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{102}}{\frac{101}{1}+\frac{100}{2}+\frac{99}{3}+...+\frac{1}{101}}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{102}}{\frac{101}{1}+\frac{100}{2}+\frac{99}{3}+...+\frac{1}{101}}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{102}}{\left(\frac{100}{2}+1\right)+\left(\frac{99}{3}+1\right)+...+\left(\frac{1}{101}+1\right)+1}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{102}}{\frac{102}{2}+\frac{102}{3}+...+\frac{102}{101}+\frac{102}{102}}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{102}}{102.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}+\frac{1}{102}\right)}\)
\(A=\frac{1}{102}\)
\(sosanh\frac{99}{-100}va`\frac{-102}{101}\)
vì : \(\frac{99}{-100}< -1\)và \(\frac{-102}{101}>-1\)
=> \(\frac{99}{-100}>\frac{-102}{101}\)
k nha!
Ta có:
\(\frac{99}{-100}< -1\) ; \(\frac{-102}{101}>-1\)
\(\Rightarrow\frac{99}{-100}< \frac{-102}{101}\)
nha bn
so sanh : 99/-100 va -102/101
ta co: -99/100=9999/10100
-102/101=10200/10100
vi 10200>9999 => 10200/10100>9999/10100 => 99/-100 < -102/101
chi co cach nay( quy dong mau) hoac quy dong tu moi co the giai dc.
chuc ban hoc tot! ket ban nha!
\(\frac{x-5}{100}+\frac{x-4}{101}+\frac{x-3}{102}=\frac{x-100}{5}+\frac{x-101}{4}+\frac{x-102}{3}\)
Bạn tham khảo tại link : https://olm.vn/hoi-dap/detail/205275532692.html
\(\frac{10}{11}x\frac{12}{13}:\frac{50}{51}-\frac{19}{20}x\frac{12}{13}:\frac{101}{102}+\frac{99}{100}\)
hảy viết 10 phân số khác nhau nằm giửa 2 phân số \(\frac{100}{101}\) và \(\frac{101}{102}\)
đặt M=101.102.11=113322
Ta có:
100/101=(100.102.11)/(101.102.11)
=112200/M
101/102=(101.101.11)/(101.102.11)
=112211/M
--->10 phân số trong khoảng này là:
112201/M; 112202/M; 112203/M; 112204/M; 112205/M; 112206/M; 112207/M; 112208/M; 112209/M; 112210/M;
\(\frac{x-5}{100}+\frac{x-4}{101}+\frac{x-3}{102}\) = \(\frac{x-100}{5}+\frac{x-101}{4}+\frac{x-102}{3}\) giai phuong trinh do ae giup mik vs nhe
\(\frac{x-5}{100}+\frac{x-4}{101}+\frac{x-3}{102}=\frac{x-100}{5}+\frac{x-101}{4}+\frac{x-102}{3}\)
<=> \(\frac{x-5}{100}-1+\frac{x-4}{101}-1+\frac{x-3}{102}-1=\frac{x-100}{5}-1+\frac{x-101}{4}-1+\frac{x-102}{3}-1\)
<=> \(\frac{x-105}{100}+\frac{x-105}{101}+\frac{x-105}{102}=\frac{x-105}{5}+\frac{x-105}{4}+\frac{x-105}{3}\)
<=> \(\left(x-105\right)\left(\frac{1}{100}+\frac{1}{101}+\frac{1}{102}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\right)=0\)
Nhận thấy: \(\frac{1}{100}+\frac{1}{101}+\frac{1}{102}+\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\ne0\)
=> \(x-105=0\)
<=> \(x=105\)
\(\frac{x-5}{100}+\frac{x-4}{101}+\frac{x-3}{102}=\frac{x-100}{5}+\frac{x-101}{4}+\frac{x-102}{3}\)
\(\Leftrightarrow\frac{x-5}{100}+\frac{x-4}{101}+\frac{x-3}{102}-\frac{x-100}{5}-\frac{x-101}{4}-\frac{x-102}{3}=0\)
\(\Leftrightarrow\left(\frac{x-5}{100}-1\right)+\left(\frac{x-4}{101}-1\right)+\left(\frac{x-3}{102}-1\right)-\left(\frac{x-100}{5}-1\right)-\left(\frac{x-101}{4}-1\right)-\left(\frac{x-102}{3}-1\right)=0\)
\(\Leftrightarrow\frac{x-105}{100}+\frac{x-105}{101}+\frac{x-105}{102}-\frac{x-105}{5}-\frac{x-105}{4}-\frac{x-105}{3}=0\)
\(\Leftrightarrow\left(x-105\right)\left(\frac{1}{100}+\frac{1}{101}+\frac{1}{102}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\right)=0\)
\(\Leftrightarrow x-105=0\left(Vì\frac{1}{100}+\frac{1}{101}+\frac{1}{102}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\ne0\right)\)
\(\Leftrightarrow x=105\)
Tính: \(\frac{101!}{100!}+\frac{102!}{101!}+...+\frac{200!}{199!}\)
\(=101+102+...+200\)= \(\frac{\left(200-101+1\right)}{2}\times\left(101+200\right)=15050\)
Chứng tỏ rằng: \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{199}+\frac{1}{200}\)