Tìm số tự nhiên x để các số sau là số chính phương:
a) x^2-14x-256
b) x^2+x+10
tìm số tự nhiên x để 2^x +1 là số chính phương
Giả sử \(^{2^x+1=a^2}\), ta có:
<=> \(2^x=a^2-1\)
<=>\(2^x=a^2-a+a-1\)
<=>\(2^x=a\left(a-1\right)+\left(a-1\right)\)
<=>\(2^x=\left(a-1\right)\left(a+1\right)\)
=>
\(a-1=2^y\)<=>\(a=2^y+1\)\(a+1=2^z\)<=>\(a=2^z-1\)(x=y+z)
=> \(2^y+1=2^z-1\)
<=>\(2^z-2^y=2\)
<=>\(2\left(2^{z-1}-2^{y-1}\right)=2\)
<=>\(2^{z-1}-2^{y-1}=1\)(chia cả 2 vế cho 2) (*)
Vì hiệu hai lũy thừa cơ số 2 và mũ khác 0 luôn là một số chia hết cho 2 nên biểu thức (*) xảy ra khi và chỉ khi:
\(2^{y-1}=1\)<=> y-1 = 0 <=> y=1\(2^{z-1}=2\)<=> z-1 = 1 <=> z=2=> x = y+z = 1+2 = 3.
Tìm các số tự nhiên k để cho số 2k + 24 + 27 là một số chính phương
Tìm các số nguyên x sao cho A = x(x-1)(x-7)(x-8) là một số chính phương
Cho A = p4 trong đó p là một số nguyên tố
a. Số A có những ước dương nào ?
b. Tìm các giá trị của p để tổng các ước dương của A là một số chính phương
Bài 1/ Tìm các số tự nhiên x , biết: (x+10)chia hết cho x+1
Bài 2/ Tìm tất cả các số tự nhiên n để n2 + 16n là một số nguyên tố
Tìm x , y là các số tự nhiên để B= \(x^2+5^y\)là số chính phương
Tìm các số tự nhiên x < 50 để x3 - 3x2 + 14x - 2 chia hết 11
1 tỷ tik nha !!!!!!
Tìm các số tự nhiên x sao cho các phân số sau là số tự nhiên : 1) 2/x 2) 3/x 3) 4/x 4) 5/x 5) 6/x 6) 9/x+1 7) 8/x+1 8) 7/x+1 9) 6/x+1 10) 5/x+1
1: Để 2/x là số tự nhiên thì \(\left\{{}\begin{matrix}\dfrac{2}{x}>0\\x\inƯ\left(2\right)\end{matrix}\right.\Leftrightarrow x\in\left\{1;2\right\}\)
2: Để 3/x là số tự nhiên thì \(\left\{{}\begin{matrix}\dfrac{3}{x}>0\\x\inƯ\left(3\right)\end{matrix}\right.\Leftrightarrow x\in\left\{1;3\right\}\)
3: Để 4/x là số tự nhiên là \(\left\{{}\begin{matrix}\dfrac{4}{x}>0\\x\inƯ\left(4\right)\end{matrix}\right.\Leftrightarrow x\in\left\{1;2;4\right\}\)
4: Để 5/x là số tự nhiên thì \(\left\{{}\begin{matrix}\dfrac{5}{x}>0\\x\inƯ\left(5\right)\end{matrix}\right.\Leftrightarrow x\in\left\{1;5\right\}\)
5: Để 6/x là số tự nhiên thì \(\left\{{}\begin{matrix}\dfrac{6}{x}>0\\x\inƯ\left(6\right)\end{matrix}\right.\Leftrightarrow x\in\left\{1;2;3;6\right\}\)
6: Để 9/x+1 là số tự nhiên thì \(\left\{{}\begin{matrix}x+1>0\\x+1\inƯ\left(9\right)\end{matrix}\right.\Leftrightarrow x+1\in\left\{1;3;9\right\}\)
=>\(x\in\left\{0;2;8\right\}\)
7: Để 8/x+1 là số tự nhiên thì
\(\left\{{}\begin{matrix}x+1\inƯ\left(8\right)\\x+1>0\end{matrix}\right.\)
=>x+1 thuộc {1;2;4;8}
=>x thuộc {0;1;3;7}
8: Để 7/x+1 là số tự nhiên thì
x+1>0 và x+1 thuộc Ư(7)
=>x+1 thuộc {1;7}
=>x thuộc {0;6}
9: Để 6/x+1 là số tự nhiên thì
x+1>0 và x+1 thuộc Ư(6)
=>x+1 thuộc {1;2;3;6}
=>x thuộc {0;1;2;5}
10: Để 5/x+1 là số tự nhiên thì
x+1>0 và x+1 thuộc Ư(5)
=>x+1 thuộc {1;5}
=>x thuộc {0;4}
Tìm số tự nhiên x để x^2+6x+2008 là một số chính phương .
Câu 1: Tìm số tự nhiên x để: 3x+2+3x+1+3x<1053
Câu 2: Tìm số tự nhiên n sao cho: 1!+2!+3!+...+n! là số chính phương
1. Chứng minh rằng nếu các số nguyên dương x, y thỏa mãn điều kiện x2 + y2 + 2x(y+1) − 2y là số chính phương thì x = y.
2. Tìm các số nguyên dương n để n4 + 2n3 + 3n3 + 3n + 7 là số chính phương.
3. Tìm các số tự nhiên m,n thỏa mãn 2m + 3 = n2.
4. Tìm các số tự nhiên n để n2 + n + 2 là tích của k số nguyên dương liên tiếp với k ≥ 2.
5. Tìm các số tự nhiên n để 36n − 6 là tích của k số nguyên dương liên tiếp với k ≥ 2.
6. Tìm số tự nhiên n lớn nhất để 427 +4500 +4n là số chính phương.
7. Tìm các số nguyên tố p để 2p - 1 - 1 / p là số chính phương