Giá trị nhỏ nhất của
|2y=7.4|=6.2+|-x=2.1|
giá trị nhỏ nhất cua |2y+7.4|+6.2+|-x+2.1|
\(\left|2y+28\right|+12+\left|-x+2\right|\)
ta có:
\(\hept{\begin{cases}\left|2y+28\right|\ge0\\\left|-x+2\right|\ge0\end{cases}}\Rightarrow\left|2y+28\right|+12+\left|-x+2\right|\ge12\)
dâu = xảy ra khi \(\hept{\begin{cases}\left|2y+28\right|=0\\\left|-x+2\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}y=14\\x=2\end{cases}}\)
Vậy GTNN của |2y+7.4|+6.2+|-x+2.1| là 12 khi và chỉ khi x=2, y=14
Tìm giá trị nhỏ nhất của biểu thức:
\(|2y+7.4|+6.2+|-x+2.1|\)
Tìm giá trị lớn nhất của biểu thức:
\(-5\left\{\left(a-1\right)^2-6.5+|b+1\right\}\)
tìm gtnn của BT A=|2Y+7.4|+6.2+|-X+2.1|
Giá trị tuyệt đối của 1 số luôn lớn hơn 0
=>/2Y+7,4/+6,2+/-X+2,1/\(\ge\) 0+6,2+0=6,2
GTNN của A là 6,2 khi 2Y+7,4=0 ( Y=3,7) và /-X+2,1/=0 ( X=2,1)
Tìm giá trị của x và y để :
S = x + 2 + 2y –10 + 2011 đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó .
tìm giá trị của x và yde
s=|x+3|+|2y-14|+2016 đạt giá trị nhỏ nhất .Tìm giá trị nhỏ nhất đó
ta có: lx+3l \(\ge\) 0 với mọi x
l2y-14l \(\ge\) 0 với mọi y
=> S= |x+3|+|2y-14|+2016 \(\ge\) 2016 với mọi x,y
dấu = xảy ra là giá trị nhỏ nhất của S đạt được khi và chỉ khi S=2016.
\(\Leftrightarrow\) lx+3l = 0 và l2y-14l = 0
\(\Leftrightarrow\) x+3=0 và 2y-14=0
\(\Leftrightarrow\)x=-3 và y=7
Vậy MinS=2016 \(\Leftrightarrow\) x=-3 và y=7
Do s=|x+3|+|2y-14|+2016 đạt giá trị nhỏ nhất nên:
x+3=0=>x=-3
2y-14=0=>y=7
a. Tìm giá trị x,y để :
S = | x + 2 | + | 2y - 10 | + 2014 đạt giá trị nhỏ nhất
b. Tìm giá trị nhỏ nhất của biểu thức : | x + 6 | + | 7 - x |
a, Ta có: \(\hept{\begin{cases}\left|x+2\right|\ge0\\\left|2y-10\right|\ge0\end{cases}\Rightarrow\left|x+2\right|+\left|2y-10\right|}\ge0\)
\(\Rightarrow\left|x+2\right|+\left|2y-10\right|+2014\ge2014\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left|x+2\right|=0\\\left|2y-10\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=5\end{cases}}}\)
Vậy SMin = 2014 tại x = -2 và y = 5
b, Đặt A = |x + 6| + |7 - x|
Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\),ta có:
\(A=\left|x+6\right|+\left|7-x\right|\ge\left|x+6+7-x\right|=13\)
Dấu "=" xảy ra <=> \(\left(x+6\right)\left(7-x\right)\ge0\Leftrightarrow-6\le x\le7\)
Vậy AMin = 13 tại \(-6\le x\le7\)
Để biểu thức S đạt giá trị nhỏ nhất => | x + 2 | và | 2y - 10 | có giá trị nhỏ nhất
=> | x+2 | = 0 => x = 0 - 2 = -2 ; | 2y -10 | =0 => 2y = 0 - 10 = -10 => y = -10 : 2 = -5
Vậy x = -2 ; y = -5 thì biểu thức S đạt giá trị nhỏ nhất
tìm giá trị của x và y để
S=|x+2|+|2y-10|+2016 đạt giá trị nhỏ nhất.Tìm giá trị nhỏ nhất đó
Vì |x-y| ≥0 với mọi x,y;|x+1|≥0 vs mọi x=>A≥2016 vs mọi x,y
=> A đạt giá trị nhỏ nhất khi:{
|x−y|=0 |
|x+1|=0 |
⇔{
x−y=0 |
x+1=0 |
⇔{
x=y |
x=−1 |
vậy với x=y=-1 thì S đạt giá trị nhỏ nhất là 2016
\(S=\left|x+2\right|+\left|2y-10\right|+2016\)
\(S\ge2016\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+2=0\\2y-10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=5\end{cases}}}\)
1) Cho x+2y=1. Tìm giá trị nhỏ nhất của x2+2y2
2) Cho 4x-3y=7. Tìm giá trị nhỏ nhất của 2x2+5y2