Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thọ Tường Vy
Xem chi tiết
Ngô Thu Hà
Xem chi tiết
ken carson
16 tháng 3 2016 lúc 7:51

bạn ơi dấu * ghi bằng chữ x cũng được

Trần Công Tâm
Xem chi tiết
Hoang Ngoc Diep
16 tháng 12 2015 lúc 13:10

=(1-2)+(3-4)+....+(2011-2012)+2013

=(-1)+(-1)+.....+(-1)+2013

ta co 1001số(-1)+2013

 =1001-(-1)+2013

=1012

nguyễn việt tien
Xem chi tiết
lê quỳnh trang
Xem chi tiết
Phạm Hằng Nga
Xem chi tiết
Nguyễn Thành Công
3 tháng 3 2016 lúc 15:42

=1/2014

câu này ở violympic có mà

Bùi Trần Minh Khôi
3 tháng 3 2016 lúc 16:07

TA TÁCH 2012 RA THÀNH 2012 CON SỐ 1.LẤY (1 + 2012/2) + (1 + 2011/3) + (1 + 2010/4); +...+ (1 + 1/2013) Ở MẪU, TA ĐƯỢC 2014/2 + 2014/3 +...+ 2014/2013(Ở MẪU).ĐẶT THỪA SỐ CHUNG 2014 RA NGOÀI TA SẼ ĐƯỢC 2014(1/2 + 1/3 +...+ 1/2013)(Ở MẪU).LẤY TỬ CHIA MẪU TA SẼ CÒN LẠI 1/2014. VẬY A=1/2014

Lê Mỹ Duyên
Xem chi tiết
Trần Thị Mỹ Duyên
17 tháng 7 2021 lúc 19:52
= 2013 nhé bạn
Khách vãng lai đã xóa
Trần Thị Mỹ Duyên
17 tháng 7 2021 lúc 19:52
=2013 nhé bạn
Khách vãng lai đã xóa
Lê Trọng Vượng
Xem chi tiết
nguyen hoang son
Xem chi tiết
soyeon_Tiểu bàng giải
24 tháng 7 2016 lúc 22:41

\(A=\frac{\frac{2013}{2}+\frac{2013}{3}+\frac{2013}{4}+...+\frac{2013}{2014}}{\frac{2013}{1}+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}}\)

\(A=\frac{2013.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)}{\left(1+\frac{2012}{2}\right)+\left(1+\frac{2011}{3}\right)+...+\left(1+\frac{1}{2013}\right)+1}\)

\(A=\frac{2013.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)}{\frac{2014}{2}+\frac{2014}{3}+...+\frac{2014}{2013}+\frac{2014}{2014}}\)

\(A=\frac{2013.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)}{2014.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}+\frac{1}{2014}\right)}\)

\(A=\frac{2013}{2014}\)

Sarah
25 tháng 7 2016 lúc 12:26

\(A=\frac{\frac{2013}{2}+\frac{2013}{3}+\frac{2013}{4}+...+\frac{2013}{2014}}{\frac{2013}{1}+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}}\)

    \(=\frac{2013.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)}{\left(1+\frac{2012}{2}\right)+\left(1+\frac{2011}{3}\right)+...+\left(1+\frac{1}{2013}\right)+1}\)

    \(=\frac{2013.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)}{\frac{2014}{2}+\frac{2014}{3}+...+\frac{2014}{2013}+\frac{2014}{2014}}\)

 \(=\frac{2013.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)}{2014.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}+\frac{1}{2014}\right)}\)         

 \(=\frac{2013}{2014}\)