Một Số Tự Nhiên A Chia Cho 3 Dư 2 , Chia Cho 7 Dư 6 . Tìm Dư Của A Khi Chia Cho 21.
Một số tự nhiên a chia 3 du 2, chia 7 dư 6. Tìm số dư của phép chia a cho 21
Ta có :
a : 3 dư 2 \(\Rightarrow\)a + 1 \(⋮\)3
a : 7 dư 6 \(\Rightarrow\)a + 1 \(⋮\)7
\(\Rightarrow\)a + 1 \(⋮\)21
\(\Rightarrow\)a + 1 là B(21)
\(\Rightarrow\)a + 1 = 21.k (k \(\in N\))
a = 21.k - 1
a = 21.k - 21 + 21 - 1
a = 21.(k-1) + 20
\(\Rightarrow\)a : 21 dư 20
Bài 1: Tìm số tự nhiên nhỏ nhất khi chia cho 6, 7, 9 được số dư theo thứ tự 2, 3,5.
Bài 2: Số học sinh khối 6 của một trường trong khoảng từ 200 và 400, khi xếp hàng 12, 15, 18 đều thừa 5 học sinh. Tính số học sinh đó.
Bài 3: Tổng số học sinh khối 6 của một trường có khoảng từ 235 đến 250 em học sinh, khi chia cho 3 dư 2, chia cho 4 dư 3, chia cho 5 dư 4, chia cho 6 dư 5, chia cho 10 dư 9. Tìm số học sinh của khối 6.
Bài 4: Một số tự nhiên chia cho 7 thì dư 5, chia cho 13 thì dư 4. Nếu đem số đó chia cho 91 thì dư bao nhiêu?
Bài 5: Một số tự nhiên a khi chia cho 7 dư 4, chia cho 9 dư 6. Tìm số dư khi chia a cho 63.
Bài 6: Tìm số tự nhiên n lớn nhất có ba chữ số, sao cho n chia cho 15 và 35 có số dư lần lượt là 9 và 29.
Bài 7: Tìm số tự nhiên nhỏ nhất có ba chữ số chia cho 18; 30; 45 có số dư lần lượt là 8; 20; 35.
Tìm một số tự nhiên A biết :khi chia A cho 7 dư 6; Khi chia A cho 13 dư 3. Tìm số dư trong phép chia A cho 91
A chia 7 dư 6=> A-6 chia hết cho 7=>A +36 chia hết cho 7(1)
A chia 13 dư 3=>A-3 chia hết cho 13=> A +36 chia hết cho 13(2)
Từ(1)(2)=>A+36 chia hết cho 7 và 13=>A thuộc bội chung của 7 và 13
Mà UCLN(7;13)=1 => A+36 thôucj bội của 7x13=91=>Achia 91 dư :91-36=55
Một số tự nhiên a khi chia cho 7 dư 4; chia cho 9 dư 6. Tìm số dư khi chia a cho 63.
A. 0
B. 36
C. 3
D. 60
Đáp án cần chọn là: D
Vì a chia cho 7 dư 4⇒(a+3)⋮7
a chia cho 9 dư 6 ⇒(a+3)⋮9
Do đó (a+3)∈BC(7,9) mà BCNN(7,9)=63.
Do đó (a+3)⋮63⇒a chia cho 63 dư 60.
a. Tìm số tự nhiên nhỏ nhất khác 5 khi chia số đó cho 70 , 140 , 350 , 700 đều dư 5
b. Tìm số tự nhiên nhỏ nhất khi chia cho 3 dư 1 chia cho 5 dư 3 và chia cho 7 dư 5
c. Tìm số tự nhiên nhỏ nhất khi chia cho 5 dư 1 , chia cho 7 dư 5
d. Tìm số tự nhiên a nhỏ nhất, biết rằng a chia cho 5,7,9 thì số dư lần lượt là 3,4,5
b.Gọi số cần tìm là a.
Ta có: a : 3 dư 1 \(\Rightarrow\) a + 2 \(⋮\) 3
a : 5 dư 3 \(\Rightarrow\) a + 2 \(⋮\) 5 và a là nhỏ nhất
a : 7 dư 5 \(\Rightarrow\) a + 2 \(⋮\) 7
\(\Rightarrow\) a + 2 \(\in\) BCNN( 3, 5, 7 ).
\(\Rightarrow\) BCNN( 3, 5, 7 ) = 3.5.7 = 105.
\(\Rightarrow\) a + 2 = 105
\(\Rightarrow\) a = 103
Một số tự nhiên a chia cho 3 dư 2, chia cho 7 dư 6. Tìm số dư của phép chia a cho 27
một số tự nhiên a khi chia cho 7 dư 4, khi chia cho 9 dư 6. Tìm số dư khi chia a cho 63.
vì a chia 7 dư 4 nên a+3 chia hết cho 7
vì a chia 9 dư 6 nên a+3 chia hết cho 9
==> a+3 chia hết cho 7 và 9
mã 7 và 9 nguyên tố cùng nhau
==>a+3 chia het cho 63
==> a chia 63 du 60
a chia cho 7 dư 4 => a+3 chia hết cho 7
a chia cho 9 dư 6 => a+3 chia hết cho 9
Suy ra a+3 chia hết cho cả 7 và 9
=>a+3 chia hết cho 63
=>a chia 63 dư (63-3) => a chia 63 dư 60
Một số tự nhiên a khi chia a cho 7 dư 4,chia cho 9 dư 6.Tìm số dư khi chia a cho 63
Do a chia 7 dư 4, a chia 9 dư 6
=> a - 4 chia hết cho 7, a - 6 chia hết cho 9
=> a - 4 + 7 chia hết cho 7, a - 6 + 9 chia hết cho 9
=> a + 3 chia hết cho 7, a + 3 chia hết cho 9
=> a + 3 thuộc BC(7,9)
Mà (7,9)=1 => a + 3 thuộc B(63)
=> a + 3 chia hết cho 63
=> a chia 63 dư 60
Vậy số dư khi a chia cho 63 là 60
Ủng hộ mk nha ^-^
a chia 7 dư 4; a chia 9 dư 6 thì (a+3) sẽ chia hết cho cả 7 và 9. Khi đó, a+3 có dạng: a+3 = 7*9*k = 63*k
=> a = 63*k - 3 = 63*(k-1) + 60
Do đó a chia 63 dư 60.
ta có a chia 7 dư 4 thì a+3 chia het cho 7
a chia 9 dư 6 thì a+3 chia het cho 9
ma UCLN(7;9)=1
suy ra a+3 chia hết cho 7*9
a+3 chia het cho 63
vay a chia 63 du 60
Một số tự nhiên a khi chia cho 7 dư 4, chia cho 9 dư 6. Tìm số dư khi chia a cho 63 ?
Ta có :
Nếu a + 3 thì chia hết cho 7
Nếu a + 3 thì chia hết cho 9
a + 3 thì chia hết cho cả 7 và 9
mã 7 và 9 nguyên tố cùng giống nhau
a + 3 chi hết cho 63
Khi a chia cho 63 thì sẽ dư 60
k cho mình nha bạn Nguyễn Lê Cát Tường 10
Gọi số dư khi chia a cho 63 là r thì a = 63k + r (0 =< r < 63) (1)
Theo bài ra ta có: a chia 7 dư 4 => r chia 7 dư 4 (vì 63k chia hết cho 7)
Ta lại có: a chia 9 dư 6 => r chia 9 dư 6 => r = 9m+6 (m nguyên, m thuộc [0;6])
r chia 7 dư 4 => r - 4 chia hết cho 7 hay 9m+2 chia hết cho 7 (2)
Vì m thuộc [0;6] => (2) chỉ thỏa mãn khi m = 6 => r = 9.6 + 6 = 60.
Đáp số:60
Do a chia 7 dư 4, a chia 9 dư 6
=> a - 4 chia hết cho 7, a - 6 chia hết cho 9
=> a - 4 + 7 chia hết cho 7, a - 6 + 9 chia hết cho 9
=> a + 3 chia hết cho 7, a + 3 chia hết cho 9
=> a + 3 thuộc BC(7,9)
Mà (7,9)=1 => a + 3 thuộc B(63)
=> a + 3 chia hết cho 63
=> a chia 63 dư 60
Vậy số dư khi a chia cho 63 là 60