Cho đoạn thẳng AB và C thuộc AB, trên nửa mặt phẳng bờ AB vẽ các tam giác đều ACE; BCF. MN là trung điểm AF; BE. C/m tam giác CMN đều
Cho đoạn thẳng AB và C thuộc AB. Trên cùng 1 nửa mặt phẳng bờ AB vẽ 2 tam giác đều AEC và BCD. Khi C di chuyển trên AB thì trung điểm I của DE di chuyển trên đường thẳng nào?
Cho đoạn thẳng AB không đổi và 2 điểm C:D lần luwowyj thuộc đoạn thẳng đó( C nằm giữa A và D ). Trên cùng 1 nửa mặt phẳng bờ AB vẽ các tam giác đều AMC; CND;NBK. Gọi G là trọng tâm tam giác MNK đến đoạn thẳng AB là không đổi
nâng cao phát triẻn toán 8 tâọ 1 bài 56,
Cho đoạn thẳng AB = 26 cm, C là một điểm bất kì trên đoạn AB, Trên cùng một nửa mặt phẳng bờ AB, vẽ các tam giác đều ACD và BCE. Khi đó, độ dài nhỏ nhất của DE là ?
Cho điểm M thuộc đoạn thẳng AB. Trên cùng 1 nửa mặt phẳng bờ AB, vẽ các tam giác đều AMC, BMD. Gọi E,F theo thứ tự là trung điểm của AD,CB.
CMR; TAM GIÁC MEF là tam giác đều
Cho đoạn thẳng AB, điểm M chuyển động trên đoạn thẳng AB. Vẽ về cùng về một phía của nửa mặt phẳng bờ AB các tam giác đều AMC và BMD. Trung điểm I của đoạn CD di chuyển trên đường nào?
Tương tự 2B. Gợi ý: Kéo dài AC và BD cắt nhau tại E. Xét các trường hợp khi M º A Þ C º A, D º E và khi M º B Þ D º B, C º E.
Từ đó chứng minh được I thuộc đường trung bình của DABE.
Bài 3: Cho tam giác ABC nhọn, M là trung điểm của BC, vẽ điểm F thuộc tia đối của tia MA sao cho MF = MA.
Trên nửa mặt phẳng không chứa C có bờ AB, vẽ đoạn thẳng AD = AB, AD AB. Trên nửa mặt phẳng không chứa B có bờ AC, vẽ đoạn thẳng AE = AC, AE AC Chứng minh:
a, ab//CF B, góc DAE = góc ACF C, tam giác ADE = tam giác CFA D, ÂM vuông góc DE
Bài 1: Cho điểm M thuộc đoạn thẳng AB. Trên cùng một nửa mặt phẳng bờ AB, vẽ các tam giác đều AMC,BMD. Gọi E,F theo thứ tự là trung điểm của AD,CB. Chứng minh rằng tam giác MEF là tam giác đều
Cho M thuộc đoạn thẳng AB. Trên cùng nửa mặt phẳng bờ AB, vẽ các tam giác đều AMC, BMD. Gọi E,F theo thứ tự là trung điểm của AD,BC. Tan giác MEF là tam giác gì? Chọn câu trả lời đúng nhất
A. Tam giác nhọn
B. Tam giác cân
C. Tam giác đều
D. Cả A,B,C đều đúng
Cho điẻm M thuộc đoạn thẳng AB. Trên cùng một nửa mặt phẳng bờ AB, vẽ các tam giác đều AMC, BMD. Gọi E và F theo thứ tự là trung điểm của AD và CB. Chứng minh tam giác MEF đều.
* Giúp e với ạ
Do ∆ACM và ∆MDB đều => AC = AM = AC và MD = BD = MB. Nối M -> E; E -> F; F -> M
Xét ∆AMD và ∆CMB có:
+ AM = CM
+ góc AMD = góc CMB = 120º (kề bù với 2 góc 60º)
+ MD = MB
=> ∆AMD = ∆CMB(c.g.c) => AD = BC => AD/2 = BC/2 => AE = CF và góc DAM = góc BCM
Xét ∆AEM và ∆CFM có:
+ AE = CF
+ góc EAM = góc FCM
+ AM = CM
=> ∆AEM = ∆CFM(c.g.c) => EM = MF và góc AME = góc FMC
=> góc AME + góc EMC = góc FMC + góc EMC
=> góc MEF = góc AMC = 60º
Xét ∆EFM có EM = MF và góc MEF = 60º => ∆EFM là tam giác cân có 1 góc = 60º
=> ∆EFM là tam giác đều.
Cho đoạn thẳng AB . M thuộc AB . Trên cùng nửa mặt phẳng bờ AB vẽ hai tam giác đều AMC , BMD Gọi E, F lần lượt là trung điểm AD, BC . CMR :BC=AD
Em tham khảo tại link dưới đây nhé.
Câu hỏi của Phạm Thị Thu Trang - Toán lớp 7 - Học toán với OnlineMath