tjm GTLN A: \(-\frac{X^2+98}{\sqrt{X^2-2}}\)
tìm GTLN của A=\(-\frac{x^2+98}{\sqrt{x^2-2}}\)
xin lỗi mk chịu
mk mới học lớp 6
nhaE@@
oOo ko biết làm oOo
huhunguyen thi thuy trang
Đặt \(\sqrt{x^2-2}=a\left(a\ge0\right)\)
\(\Rightarrow x^2=a^2+2\)
Thế vào ta được
\(A=-\frac{a^2+100}{a}=-\left(a+\frac{100}{a}\right)\le-2\sqrt{100}=20\)
Đạt được khi \(\orbr{\begin{cases}x=\sqrt{102}\\x=-\sqrt{102}\end{cases}}\)
GTLN của A=\(-\frac{x^2+98}{\sqrt{x^2-2}}\) là?
Câu này mình giải không biết bao nhiêu lần hết. Bạn lục lại đi nha
GTLN của A= \(-\frac{x^2+98}{\sqrt{x^2-2}}\)là?
http://olm.vn/hoi-dap/question/751345.html
Cho biểu thức A =\(\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\frac{\sqrt{x}-1}{2}\)
Tìm x để A đạt GTLN, tìm GTLN đó
Cho A = \(\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\frac{\left(1-x\right)^2}{2}\) Tìm GTLN của A.
Cho A=\(\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
a) Rút gọn A
b)Tìm GTLN
tích mình với
ai tích mình
mình tích lại
thanks
Tìm GTNN của \(\sqrt{x^2-x+\frac{13}{2}}+\sqrt{x^2-3x+\frac{5}{2}}\)
Tìm GTLN của B=7x-y khi x^2+y^2=2
Cho \(C=\frac{4\sqrt{x}-7}{x+\sqrt{x}-2}+\frac{2-\sqrt{x}}{\sqrt{x}-1}-\frac{1+2\sqrt{x}}{\sqrt{x}+2}\)
a> Tìm x để C= 1/2
B> Tìm x thuộc Z sao cho C nhận giá trị nguyên
C> Tìm GTLN của C
CHO BIỂU THỨC:
\(A=\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\frac{\sqrt{x}-1}{2}\)
a) rút gọn A
b) CM: A>0 với mọi x \(\ne1\)
c) tìm x để A đạt GTLN, tìm GTLN đó
p=\(\left(\frac{1-\sqrt{x}}{\sqrt{x}-2}-\frac{\sqrt{x}}{1-\sqrt{x}}+\frac{\sqrt{x}+2}{x-3\sqrt{x}+2}\right):\left(\frac{2}{\sqrt{x}-2}+\frac{1-\sqrt{x}}{x-2\sqrt{x}}\right)\)
a) rg p
b) tính gt p biết x=\(6-2\sqrt{5}\)
c) tìm GTLN của \(\frac{p}{\sqrt{x}}\)
\(\sqrt{x}=y\\ \)
ĐK: \(x\ne0,1,4\Leftrightarrow\left\{\begin{matrix}y>0\\y\ne1\&4\end{matrix}\right.\) ko sửa được y khác 1 &2
\(P=\left(\frac{\left(1-y\right)}{\left(y-2\right)}+\frac{y}{\left(y-1\right)}+\frac{y+2}{\left(y-1\right)\left(y-2\right)}\right):\left(\frac{2}{y-2}-\frac{y-1}{y\left(y-2\right)}\right)\)
\(P=\left(\frac{2y-y^2-1}{\left(y-2\right)\left(y-1\right)}+\frac{y^2-2y}{\left(y-1\right)\left(y-2\right)}+\frac{y+2}{\left(y-1\right)\left(y-2\right)}\right):\left(\frac{2y-y+1}{y\left(y-2\right)}\right)\)
\(P=\left(\frac{y+1}{\left(y-1\right)\left(y-2\right)}\right).\left(\frac{y\left(y-2\right)}{\left(y+1\right)}\right)=\frac{y}{y-1}\)
a) \(P=\frac{\sqrt{x}}{\sqrt{x}-1}\)
b)\(x=6-2\sqrt{5}=5-2\sqrt{5}+1=\left(\sqrt{5}-1\right)^2\)
\(p=\frac{\left(\sqrt{5}-1\right)}{\sqrt{5}-2}=\left(\sqrt{5}-1\right)\left(\sqrt{5}+2\right)=3-\sqrt{5}\)
C)\(\frac{P}{\sqrt{x}}=\frac{1}{\sqrt{x}-1}\ge-1\) tuy nhiên đk: x khác 0=> dấu đẳng thức không xẩy ra (xem lại đề)