Giải pt nghiệm nguyên : x^6+8x^3+11x^2+28x+12+3y^2=0
Giải pt nghiệm nguyên : x^6+8x^3+11x^2+28x+12+3y^2=0
Giải pt nghiệm nguyên : x^6+8x^3+11x^2+28x+12+3y^2=0
Giải pt : x^6+8x^3+11x^2+28x+12+3y^2=0
Giải pt nghiệm nguyên : x^6+8x^3+11x^2+28x+12+3y^2=0
Giải phương trình :x^6+8x^3+11x^2+28x+12+3y^2=0.
Giải phương trình :x^6+8x^3+11x^2+28x+12+3y^2=0.
Giai phương trình : x^6 + 8x^3 + 11x^2 + 28x + 12 + 3y^2 =0
(2) giải các pt sau bằng công thức nghiệm (hoặc công thức nghiện thu gọn)
1) \(x^2-11x+30=0\)
2) \(x^2-x-20=0\)
3) \(x^2+14x+24=0\)
4) \(3x^2+8x-2=0\)
giúp mk vs ạ mk đang cần gấp
\(1,\Delta=\left(-11\right)^2-4\cdot30=1\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{11-1}{2}=5\\x=\dfrac{11+1}{2}=6\end{matrix}\right.\\ 2,\Delta=\left(-1\right)^2-4\left(-20\right)=81\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1-\sqrt{81}}{2}=-4\\x=\dfrac{1+\sqrt{81}}{2}=5\end{matrix}\right.\\ 3,\Delta=14^2-4\cdot24=100\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-14-\sqrt{100}}{2}=-12\\x=\dfrac{-14+\sqrt{100}}{2}=-2\end{matrix}\right.\\ 4,\Delta=8^2-4\left(-2\right)3=88\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-8-\sqrt{88}}{6}=\dfrac{-4+\sqrt{22}}{3}\\x=\dfrac{-8+\sqrt{88}}{6}=\dfrac{-4-\sqrt{22}}{3}\end{matrix}\right.\)
1) Δ = (-11)2 -4.1.30 = 1 > 0 ⇒ Phương trình đã cho có hai nghiệm phân biệt, \(\sqrt{\Delta}\)=1.
x1 = \(\dfrac{-\left(-11\right)+1}{2.1}\) = 6, x2 = \(\dfrac{-\left(-11\right)-1}{2.1}\) = 5.
2) Δ = (-1)2 -4.1.(-20) = 81 > 0 ⇒ Phương trình đã cho có hai nghiệm phân biệt, \(\sqrt{\Delta}\)=9.
x1 = \(\dfrac{-\left(-1\right)+9}{2.1}\) = 5, x2 = \(\dfrac{-\left(-1\right)-9}{2.1}\) = -4.
3) Δ' = 72 -1.24 = 25 > 0 ⇒ Phương trình đã cho có hai nghiệm phân biệt, \(\sqrt{\Delta'}\)=5.
x1 = \(\dfrac{-7+5}{1}\) = -2, x2 = \(\dfrac{-7-5}{1}\) = -12.
4) Δ' = 42 -3.(-2) = 22 > 0 ⇒ Phương trình đã cho có hai nghiệm phân biệt, \(\sqrt{\Delta'}\)=\(\sqrt{22}\).
x1 = \(\dfrac{-4+\sqrt{22}}{3}\), x2 = \(\dfrac{-4-\sqrt{22}}{3}\).
Tìm nghiệm nguyên của PT: \(2x^2+5y^2-8x+3y=0\)
\(5y^2+3y=-2x^2+8x=8-\left(2x^2-8x+8\right)=8-2\left(x-2\right)^2\le8\)<=> \(5y^2+3y-8\le0< =>\left(5y+8\right)\left(y-1\right)\le0< =>\frac{-8}{5}\le y\le1\)
y nguyên => y = -1; 0; 1
y=-1 => \(2x^2+5-8x-3=0< =>x^2-4x+1=0\)(không có nghiệm x nguyên)
y=0 =>\(2x^2+0-8x-0=0< =>2x^2-8x=0< =>\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
y=1 =>\(2x^2+5-8x+3=0< =>x^2-4x+4=0< =>x=2\)
vậy pt có nghiệm (x;y) = (0;0) (4;0) (2;1)