Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Chu Thị Nhung
Xem chi tiết
Chu Thị Nhung
Xem chi tiết
Chu Thị Nhung
Xem chi tiết
Lonely Member
20 tháng 11 2016 lúc 20:42

xet tam giac bam va tam giac bcm co

bm la canh chung 

goc abm=goc cbm ( vi bm la tia phan giac cua goc abc)

ba=bc

=> tam giac bam= tam giac bcm ( c-g-c)

ĐÚNG nhé

Phạm Thị Hằng
20 tháng 11 2016 lúc 20:44

 GT     |          ABC là tam giác , BA = BC , góc ABM = góc CBM         

 KL     |             tam giác BAM = tam giác BCM

            Xét \(\Delta BAM\) và \(\Delta BCM\) có:

                  BM là cạnh chung

              Góc ABM = Góc MBC  (gt)

                    BA = BC     (gt)    

         =>  \(\Delta BAM=\Delta BCM\left(c-g-c\right)\)              

Chu Thị Nhung
20 tháng 11 2016 lúc 20:44

Ban ve hình giúp mik nha

nhocnophi
Xem chi tiết
mark tuan
Xem chi tiết
li nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 4 2023 lúc 20:53

a: Xét ΔBAM và ΔBNM có

BA=BN

góc ABM=góc NBM

BM chung

=>ΔBAM=ΔBNM

b: ΔBAN cân tại B

mà BI là phân giác

nên I là trung điểm của AN

c: góc NMC+góc AMN=180 độ

góc AMN+góc ABC=180 độ

=>góc NMC=góc ABC

Lê Ngọc Linh
Xem chi tiết
Dịu Trần
Xem chi tiết
Hải Đăng Phạm
20 tháng 2 2023 lúc 17:30

a) Ta có: $\widehat{ABM} = \widehat{NBM}$ (vì $BN = BA$) và $\widehat{BMA} = \widehat{NMB}$ (vì BM là phân giác của $\widehat{B}$). Vậy tam giác $ABM$ và tam giác $NBM$ có hai góc bằng nhau nên chúng đồng dạng.

b) Ta có $BN = BA$, suy ra tam giác $ABN$ đều, do đó $\widehat{NAB} = 60^\circ$. Ta có thể tính được $\widehat{BAC} = 90^\circ - \widehat{CAB} = 90^\circ - \widehat{ABN} = 30^\circ$. Khi đó, $\widehat{AMC} = \widehat{A} + \widehat{BAC} = 90^\circ + 30^\circ = 120^\circ$.

Do đó, tam giác $AMC$ là tam giác cân tại $A$ vì $\widehat{AMC} = 120^\circ = 2\cdot \widehat{ABC}$ (do tam giác $ABC$ vuông tại $A$). Khi đó, $AM = MC$.

c) Ta có $\widehat{CAB} = 30^\circ$, nên tia đối của $AB$ là tia $AH$ cũng là phân giác của $\widehat{A}$. Gọi $E'$ là trên $AH$ sao cho $AE' = CN$. Khi đó, ta có thể chứng minh $E'$ trùng với $E$, tức là $E'$ nằm trên đoạn thẳng $CE$ và $CE' = EI$.

Đặt $x = BE = BC$. Ta có $AN = AB = BN = x$, do đó tam giác $ABN$ đều và $\widehat{ANB} = 60^\circ$. Khi đó, ta có $\widehat{A} + \widehat{M} + \widehat{N} = 180^\circ$, hay $\widehat{M} + \widehat{N} = 90^\circ$.

Ta có $\dfrac{AE'}{CE'} = \dfrac{AN}{CN} = 1$, do đó $AE' = CE' = x$. Khi đó, tam giác $ACE'$ đều và $\widehat{ACE'} = 60^\circ$. Ta có thể tính được $\widehat{C} = 180^\circ - \widehat{A} - \widehat{B} = 60^\circ$, nên tam giác $ABC$ đều và $AC = x$.

Do $AM = MC$, ta có $\widehat{MAC} = \dfrac{180^\circ - \widehat{M}}{2} = \dfrac{180^\circ - \widehat{N}}{2}$. Ta cũng có $\widehat{B} + \widehat{N} + \widehat{C} = 180^\circ$, hay $\widehat{N} = 180^\circ - \widehat{A} - \widehat{B} - \widehat{B} - \widehat{C}$

Do đó, $\widehat{N} = 180^\circ - \widehat{A} - 90^\circ - \widehat{C} = 90^\circ - \widehat{B}$

Vậy $\widehat{MAC} = \dfrac{180^\circ - \widehat{M}}{2} = \dfrac{180^\circ - \widehat{N}}{2} = \dfrac{\widehat{B}}{2}$

Suy ra tam giác ABM và NBM có cùng một góc ở đỉnh M, và hai góc còn lại lần lượt bằng $\dfrac{\widehat{A}}{2}$ và $\dfrac{\widehat{C}}{2}$, nên chúng đồng dạng. Do đó, ta có $ABM = NBM$.

Về phần b, do $AM = MC$, ta có $AMC$ là tam giác cân tại $M$, hay $BM$ là đường trung trực của $AC$. Vì $BN$ là đường phân giác của $\widehat{B}$, nên ta có $BM$ cũng là đường phân giác của tam giác $\triangle ABC$. Do đó, $BM$ là đường phân giác của $\widehat{BAC}$, hay $\widehat{BAM} = \widehat{MAC} = \dfrac{\widehat{BAC}}{2}$. Vậy $\widehat{BAM} + \widehat{ABM} = \dfrac{\widehat{BAC}}{2} + \dfrac{\widehat{A}}{2} = 90^\circ$, hay tam giác $\triangle ABM$ là tam giác vuông tại $B$.

Về phần c, vì $AE = CN$, ta có tam giác $\triangle AEC$ là tam giác cân tại $E$, nên $EI$ là đường trung trực của $AC$. Do đó, $\widehat{BIM} = \widehat{BIE} + \widehat{EIM} = \widehat{BCM} + \widehat{CAM} = \dfrac{\widehat{B}}{2} + \dfrac{\widehat{C}}{2}$. Tuy nhiên, ta đã chứng minh được $\widehat{MAC} = \dfrac{\widehat{B}}{2}$, nên $\widehat{BIM} = \widehat{MAC} + \dfrac{\widehat{C}}{2}$. Do đó, $B, M, I$ thẳng hàng.

Nguyễn Lê Phước Thịnh
20 tháng 2 2023 lúc 22:31

a: Xét ΔABM va ΔNBM có

BA=BN

góc ABM=góc NBM

BM chung

=>ΔABM=ΔNBM

b: ΔABM=ΔNBM

=>MA=MN

mà MN<MC

nên MA<MC

c: Xet ΔMAE vuông tại A và ΔMNC vuông tại N có

MA=MN

AE=NC

=>ΔMAE=ΔMNC

=>ME=MC

=>M nằm trên trung trực của CE

mà BI là trung trựccủa CE
nen B,M,I thẳng hàng

Mary0000@gmail.com
Xem chi tiết