1+\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{1000000}\)
Tính
1+\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{1000000}\)
Tính
1+\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{1000000}\)
Tính
Giải ra giúp mk lun
Bài 1:Thực hiện các phép tính
a)A=\(1-\frac{1}{1+\frac{2}{1-\frac{3}{1-4}}}\)
b)B=\(-\frac{1}{10}-\frac{1}{100}-\frac{1}{1000}-\frac{1}{10000}-\frac{1}{100000}-\frac{1}{1000000}\)
Bài 2:Thực hiện các phép tính sau 1 cách hợp lý
a)A=\(\frac{\frac{3}{7}-\frac{3}{17}+\frac{3}{37}}{\frac{5}{7}-\frac{5}{17}+\frac{5}{37}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}}{\frac{7}{5}-\frac{7}{4}+\frac{7}{3}-\frac{7}{2}}\)
b)B=\(\frac{\frac{2}{39}-\frac{1}{15}-\frac{2}{153}}{\frac{1}{34}+\frac{3}{20}-\frac{3}{26}}:\frac{1+\frac{2}{71}-\frac{5}{121}}{\frac{65}{121}-\frac{26}{71}-13}\)
c)C=\(\left(\frac{112}{13.20}+\frac{112}{20.27}+\frac{112}{27.34}+...+\frac{112}{62.69}\right):\left(-\frac{5}{9.13}-\frac{7}{9.25}-\frac{13}{19.25}-\frac{31}{19.69}\right)\)
d)D=\(\frac{2.2016}{1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+2016}}\)
e)E=\(-1-\frac{1}{3}-\frac{1}{6}-\frac{1}{10}-\frac{1}{15}-...-\frac{1}{1225}\)
Tính
\(D=\frac{-1}{10}-\frac{1}{10}-\frac{1}{100}-\frac{1}{1000}-\frac{1}{10000}-\frac{1}{100000}-\frac{1}{1000000}\)
tính A=\(-\frac{1}{10}-\frac{1}{100}-\frac{1}{1000}-\frac{1}{10000}-\frac{1}{100000}-\frac{1}{1000000}\)
chứng minh
\(1998< 1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{1000000}}< 1999\)
Tính:
\(A=\left(1-\frac{1}{2010}\right)\left(1-\frac{2}{2010}\right)\left(1-\frac{3}{2010}\right)...\left(1-\frac{4020}{2010}\right)\)
\(B=3+7+13+21+31+43+57+...+9901\)
\(C=\left(1-\frac{4}{1^2}\right)\left(1-\frac{4}{3^2}\right)\left(1-\frac{4}{5^2}\right)...\left(1-\frac{4}{2015^2}\right)\)
\(D=1-\frac{1}{1+2}-\frac{1}{1+2+3}-\frac{1}{1+2+3+4}-...-\frac{1}{1+2+3+4+...+100}\)
\(E=1+2+3+4+5+6+...+1000000\)
Giải giúp tớ với nhé! Ai giải đúng mình sẽ tick cho 3 cái.
nhưng nhìu quá bạn ơi, 3 **** thế này là quá ít, làm mệt mà bạn k có 3 thì bõ j
tính biểu thức
\(\frac{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}}{1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}}:\frac{3+\frac{3}{2}+\frac{3}{3}+\frac{3}{4}}{2-\frac{2}{2}+\frac{2}{3}-\frac{2}{4}}\)
giải:
ta có :
\(\frac{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}}{1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}}:\frac{3+\frac{3}{2}+\frac{3}{3}+\frac{3}{4}}{2-\frac{2}{2}+\frac{2}{3}-\frac{2}{4}}\)
\(\frac{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}}{1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}}.\frac{2\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right)}{3\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)}=\frac{2}{3}\)
1, Tính \(\frac{1}{2}-\left(\frac{1}{3}+\frac{2}{3}\right)+\left(\frac{1}{4}+\frac{2}{4}+\frac{3}{4}\right)-\left(\frac{1}{5}+\frac{2}{5}+\frac{3}{5}+\frac{4}{5}\right)+...+\left(\frac{1}{100}+\frac{2}{100}+\frac{3}{100}+...+\frac{99}{100}\right)\)2,Tính \(\left(1-\frac{1}{2^2}\right)x\left(1-\frac{1}{3^2}\right)x\left(1-\frac{1}{4^2}\right)x...x\left(1-\frac{1}{n^2}\right)\)