Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
mirachan
Xem chi tiết
Nguyễn Nhật Minh
26 tháng 12 2015 lúc 11:57

chtt

http://olm.vn/hoi-dap/question/24563.html

 

Minh Nguyen
Xem chi tiết
Hùng Hoàng
28 tháng 9 2015 lúc 21:56

52222=251111<321111=25555

suy ra 52222<25555

Trịnh Trương Thúy Vy
Xem chi tiết
Despacito
29 tháng 10 2017 lúc 21:47

\(2^{5555}=\left(2^5\right)^{1111}=32^{1111}\)

\(5^{2222}=\left(5^2\right)^{1111}=25^{1111}\)

vì \(32^{1111}>25^{1111}\) nên \(2^{5555}>5^{2222}\)

Tôi Không Tên
Xem chi tiết
Nguyễn công tuấn sang
9 tháng 11 2021 lúc 13:08
Ai biết được mà hỏi
Khách vãng lai đã xóa
tranthixuan
Xem chi tiết
nguyen duy nien
23 tháng 11 2016 lúc 20:01

ko thuc hien duoc

ri to
Xem chi tiết
OoO Kún Chảnh OoO
4 tháng 9 2015 lúc 15:14

=2222^5555 +4^5555 +5555^2222 -4^2222-(4^5555 -4^2222) 
=(2222+4).M +(5555-4).N -(4^3333.4^2222 -4^2222) 
=(2222+4).M +(5555-4).N -4^2222(4^3333-1) 
==(2222+4).M +(5555-4).N --4^2222 (64^1111-1) 
==(2222+4).M +(5555-4).N -4^2222(63K) 
ta thấy 2222+4=2226 chia hết 7 
5555-4 =5551 chia hết cho 7 
63 chia hết cho 7 
-=>(2222^5555) + (5555^2222) chia hết cho 7 

Tuyết Loan Nguyễn Thị
Xem chi tiết
Cute phômaique
7 tháng 7 2015 lúc 10:09


=2222^5555 +4^5555 +5555^2222 -4^2222-(4^5555 -4^2222) 
=(2222+4).M +(5555-4).N -(4^3333.4^2222 -4^2222) 
=(2222+4).M +(5555-4).N -4^2222(4^3333-1) 
==(2222+4).M +(5555-4).N --4^2222 (64^1111-1) 
==(2222+4).M +(5555-4).N -4^2222(63K) 
ta thấy 2222+4=2226 chia hết 7 
5555-4 =5551 chia hết cho 7 
63 chia hết cho 7 
-=>(2222^5555) + (5555^2222) chia hết cho 7 
 

Lê Hà Huy Vũ
Xem chi tiết
Lê Đức Huy
Xem chi tiết

cách 1 
=2222^5555 +4^5555 +5555^2222 -4^2222-(4^5555 -4^2222) 
=(2222+4).M +(5555-4).N -(4^3333.4^2222 -4^2222) 
=(2222+4).M +(5555-4).N -4^2222(4^3333-1) 
==(2222+4).M +(5555-4).N --4^2222 (64^1111-1) 
==(2222+4).M +(5555-4).N -4^2222(63K) 
ta thấy 2222+4=2226 chia hết 7 
5555-4 =5551 chia hết cho 7 
63 chia hết cho 7 
-=>(2222^5555) + (5555^2222) chia hết cho 7 

cách 2 ta có công thức (a+b)^n =a^n +a^(n-1).b...............b^n (n chẳn) 
(a-b)^n = a^n+...............+-b^b(n lẻ) 
(2222^5555) + (5555^2222) 
=(7.317 +3)^5555 + (7.793+4)^2222 
=7K+3^5555 +7P+4^2222 
=7K+7P +(3^5)^1111 + (4^2)^1111 
=7P+7k +(259)U chia hết cho 7 

Nguyễn Xuân Sáng
22 tháng 4 2016 lúc 21:22

Mình áp dụng công thức a^m +hoặc - b^m =( a + hoặc - b ) . M

= 2222^5555 + 4^5555 + 5555^2222 - 4^2222 - ( 4^5555 - 4^2222 )
=( 2222 + 4 ) . M + ( 5555 - 4 ) . N - ( 4^3333 . 4^2222 - 4^2222 )
=( 2222 + 4 ) . M + ( 5555 - 4 ) . N -4^2222 ( 4^3333 - 1 )
=( 2222 + 4 ) . M + ( 5555 - 4 ) . N - 4^2222 ( 64^1111 - 1 )
=( 2222 + 4 ) . M + ( 5555 - 4 ) . N - 4^2222 ( 63K )
Ta thấy 2222+4=2226 chia hết 7
5555-4 =5551 chia hết cho 7
63 chia hết cho 7
-=>(2222^5555) + (5555^2222) chia hết cho 7