chứng mih rằng
trog k số nguyên liên tiếp có 1 và chỉ 1 số chia hết cho k
Chứng minh trong k số nguyên liên tiếp có 1 và chỉ 1 số chia hết cho k
trong k số nguyên liên tiếp có 1 và chỉ một số nguyên chia hết cho k
Gọi số nguyên đầu tiên là a
số nguyên tiếp theo là a+1;a+2;...a+k-1
thực hiện phép chia a cho k ta được
a=kq+r với r=0;1;2;...k-1
từ đó ta có đpcm
Chứng tỏ:
Trong 4 số tự nhiên liên tiếp,có 1 số và chỉ 1 số chia hết cho 4.(nhanh mk k)
Xét Ví dụ:
3,4,5,6 có 4\(⋮\)4
Lấy thêm ví dụ tương tự sẽ CM đc điều cần CM
Mk chỉ bt thế thôi
Xét, Ví dụ :
3;4;5;6; có 4 : 4
Lấy thêm ví dụ tương tự sẽ CM đc điều cần CM
\(CMR:\)
a,Trong hai số nguyên liên tiếp có 1 và chỉ 1 số chia hết cho 2
b,Trong ba số nguyên liên tiếp có 1 và chỉ 1 số chia hết cho 3
c,Tổng của 3 số nguyên liên tiếp chia hết cho 3
d,Tổng của 5 số nguyên liên tiếp chia hết cho 5
e,Tổng của n số nguyên lẻ liên tiếp chia hết cho n
C)gọi 3 số nguyên liên tiếp lần lượt là a, a+1 ,a+2
ta có:
a+(a+1)+(a+2)
=3a+3
=3(a+1) => chia hết cho 3
d) Gọi 5 số nguyên liên tiếp ần lượt là a, a+1, a+2, a+3, a+4
Ta có: a + a+1 + a+2 +a+3 +a+4
=5a +10
=5(a+2) => chi hết cho 5
Chứng tỏ rằng
a) Trong 2 số nguyên liên tiếp có một và chỉ một số chia hết cho 2
b) Trong 3 số nguyên liên tiếp có một và chỉ một số chia hết cho 3
a ) Gọi 2 số nguyên liên tiếp lần lượt là a và a + 1
* Nếu a là số chẵn => a chia hết cho 2
* Nếu a là số lẻ => a + 1 là số chẵn => a + 1 chia hết cho 2
Vậy trong 2 số nguyên liên tiếp có 1 số chia hết cho 2 .
b ) Gọi 3 số nguyên liên tiếp lần lượt là a , a + 1 và a + 2
* Nếu a chia hết cho 3 thì bài toán luôn đúng
* Nếu a chia 3 dư 1 thì a = 3k +1
=> a + 2 = 3k + 1 + 2 = 3k + 3
=> a + 2 chia hết cho 3
* Nếu a chia 3 dư 2 thì a = 3k + 2
=> a + 1 = 3k + 2 + 1 = 3k + 3
=> a + 1 chia hết cho 3
Vậy trong 3 số nguyên liên tiếp có 1 số chia hết cho 3 .
Chứng tỏ rằng trong hai số tự nhiên chẵn liên tiếp thì luôn có một và chỉ một số chia hết cho 4(xét hai số tự nhiên chẵn liên tiếp a=2k và a+2=2k+2 ( với k thuộc n) rồi xét trường hợp k là số chẵn k là số lẻ)
Chứng mih rằng tổng 3 số nguyên liên tiếp luôn chia hết cho 3
Gọi 3 số nguyên liên tiếp là a; a + 1; a + 2 (a thuộc Z).
Ta có: a + (a + 1) + (a + 2) = a + a + 1 + a + 2 = 3a + 3 = 3.(a + 1) chia hết cho 3
=> Tổng 3 số nguyên liên tiếp luôn chia hết cho 3 (đpcm).
vì: trong 3 số có 1 số chia hết cho 3
x+(x+1)+(x+2) = 3x+3 = 3(x+1) chia het cho 3
bài1:chứng tỏ rằng:
A, trong 3 số tự nhiên liên tiếp có 1 và chỉ có 1 số chia hết cho3
B, trong 2 số tự nhiên chẵn liên tiếp có 1 và chỉ có một số chia hết cho 4
Gọi 3 STN liên tiếp là : a,a+1,a=2(a thuộc N )
Khi chia a cho 3 thì a sẽ có dạng 3k,3k+1,3k+2(k thuộc N )
+ Nếu a=3k thì a : 3 ( thay : cho chia hết )
a+1 :/ 3 ( thay :/ cho ko chia hết )
a+2:/3
+Nếu a=3k+1 thì a:/ 3
a+1 =3k+1+1=3k+2 :/ 3
a+2=3k+2+1= 3k+3:3
+ Nếu a=3k+2 thì a:/3
a=3k+1=3k+1+2=3k+3:3
a=3k+2=3k+2+2=3k+a:/3
Vậy ...................................
Nhớ câu kia cũng tương tự vậy mà làm
Chứng minh rằng tổng của 2k+1 (k thuộc N) số nguyên liên tiếp thì chia hết cho 2k+1