Chứng minh
Ta có
A =\(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{420}\)
Chứng minh A <
Cho M=\(\frac{1}{10}+\frac{1}{15}+\frac{1}{20}+\frac{1}{28}+...+\frac{1}{105}+\frac{1}{420}\)chứng minh rằng \(\frac{1}{3}< M< \frac{1}{2}\)
Chứng minh rằng a,\(\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}< 24\)
b,\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>10\)
b, \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>10\)
Ta có: \(1< 100\Rightarrow\sqrt{1}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{1}}< \frac{1}{\sqrt{100}}\)
\(2< 100\Rightarrow\sqrt{2}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{2}}< \frac{1}{\sqrt{100}}\)
\(3< 100\Rightarrow\sqrt{3}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{3}}< \frac{1}{\sqrt{100}}\)
______________________________________________
\(100=100\Rightarrow\sqrt{100}=\sqrt{100}\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\left(1\right)\)
Từ (1) suy ra:
\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\left(100sh\frac{1}{\sqrt{100}}\right)\)
\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}.100\)
\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>\frac{10}{\sqrt{100}}\)
\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>10\left(ĐPCM\right)\)
Chứng minh rằng :
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{19}-\frac{1}{20}=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}\)
Ta xét : \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{19}-\frac{1}{20}=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{19}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{20}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{20}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+....+\frac{1}{20}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{20}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{9}+\frac{1}{10}\right)\)
\(=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+....+\frac{1}{20}\)
Vì \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+....+\frac{1}{20}=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}\)
nên \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+....+\frac{1}{20}\) ( đpcm )
cho \(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\) không tính tổng S, hãy chứng minh S không phải 1 số tự nhiên
cho \(A=\frac{1}{61}+\frac{1}{62}+\frac{1}{63}+...+\frac{1}{99}+\frac{1}{100}\) . Chứng minh \(A>\frac{9}{20}\)
a,Ta có: \(\frac{3}{10}=\frac{3}{10};\frac{3}{11}< \frac{3}{10};\frac{3}{12}< \frac{3}{10};\frac{3}{13}< \frac{3}{10};\frac{3}{14}< \frac{3}{10}\)
\(\Rightarrow S< \frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}=\frac{15}{10}=\frac{3}{2}=1,5\left(1\right)\)
Lại có: \(\frac{3}{10}>\frac{3}{15};\frac{3}{11}>\frac{3}{15};\frac{3}{12}>\frac{3}{15};\frac{3}{13}>\frac{3}{15};\frac{3}{14}>\frac{3}{15}\)
\(\Rightarrow S>\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}=\frac{15}{15}=1\left(2\right)\)
Từ (1) và (2) => 1 < S < 1,5
Vậy...
b, \(A=\frac{1}{61}+\frac{1}{62}+...+\frac{1}{100}\)
\(=\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{80}\right)+\left(\frac{1}{81}+\frac{1}{82}+...+\frac{1}{100}\right)\)
Ta có: \(\frac{1}{61}>\frac{1}{80};\frac{1}{62}>\frac{1}{80};...;\frac{1}{80}=\frac{1}{80}\)
\(\Rightarrow\frac{1}{61}+\frac{1}{62}+...+\frac{1}{80}>\frac{1}{80}+\frac{1}{80}+...+\frac{1}{80}=\frac{20}{80}=\frac{1}{4}\left(1\right)\)
Lại có: \(\frac{1}{81}>\frac{1}{100};\frac{1}{82}>\frac{1}{100};...;\frac{1}{100}=\frac{1}{100}\)
\(\Rightarrow\frac{1}{81}+\frac{1}{82}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{20}{100}=\frac{1}{5}\left(2\right)\)
Từ (1) và (2) => \(A>\frac{1}{4}+\frac{1}{5}=\frac{9}{20}\)
Vậy...
Chứng minh rằng:
\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}<\frac{1}{2}\)
1)
\(Cho:\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+...+\frac{1}{200}\)
Chứng minh: \(A>\frac{9}{10}\)
2)
Cho \(B=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)
Chứng minh \(B>\frac{7}{12}\)
1)
Cho \(\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+...+\frac{1}{200}\)
Chứng minh: \(A>\frac{9}{10}\)
2)
Cho \(B=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)
Chứng minh: \(B>\frac{7}{12}\)
Chứng minh rằng: \(\frac{1}{a\left(a+1\right)}=\frac{1}{a}-\frac{1}{a+1}\)
Áp dụng tính : A=\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{132}\)
Ta co \(\frac{1}{a}-\frac{1}{a+1}=\frac{a+1}{a\left(a+1\right)}-\frac{a}{a+1}=\frac{a+1-a}{a\left(a+1\right)}=\frac{1}{a\left(a+1\right)}\)
Vay \(\frac{1}{a\left(a+1\right)}=\frac{1}{a}-\frac{1}{a+1}\)
Ap dung cong thuc tren:
=> A = \(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+.....+\frac{1}{132}\)
A = \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{11.12}\)
A = \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{11}-\frac{1}{12}\)
A = \(\frac{1}{2}-\frac{1}{12}\)
A = \(\frac{5}{12}\)
Ta có: \(\frac{1}{a\left(a+1\right)}=\frac{\left(a+1\right)-a}{a\left(n+1\right)}=\frac{a+1}{a\left(a+1\right)}-\frac{a}{a\left(a+1\right)}=\frac{1}{a}-\frac{1}{a+1}\)
=> đpcm
\(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{132}\)
\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{11.12}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{11}-\frac{1}{12}\)
\(A=\frac{1}{2}-\frac{1}{12}\)
\(A=\frac{5}{12}\)
C = \(\frac{1}{12}+\frac{1}{30}+\frac{1}{56}+......+\frac{1}{2652}\)
Chứng minh C < \(\frac{1}{4}\)