Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen thi ai
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
12 tháng 11 2020 lúc 16:13

a) Gọi d là ƯC( 7n + 10 ; 5n + 7 ) 

=> \(\hept{\begin{cases}7n+10⋮d\\5n+7⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5\left(7n+10\right)⋮d\\7\left(5n+7\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}35n+50⋮d\\35n+49⋮d\end{cases}}\)

=> ( 35n + 50 ) - ( 35n + 49 ) chia hết cho d

=> 35n + 50 - 35n - 49 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> ƯCLN( 7n + 10 ; 5n + 7 ) = 1

=> 7n + 10 ; 5n + 7 là hai số nguyên tố cùng nhau ( đpcm )

b) Gọi d là ƯC( 2n + 3 ; 4n + 8 )

=> \(\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)

=> ( 4n + 8 ) - ( 4n + 6 ) chia hết cho d

=> 4n + 8 - 4n - 6 chia hết cho d

=> 2 chia hết cho d

=> d ∈ { 1 ; 2 }

Với d = 2 => \(2n+3⋮̸̸d\)

=> d = 1

=> ƯCLN( 2n + 3 ; 4n + 8 ) = 1

=> 2n + 3 ; 4n + 8 là hai số nguyên tố cùng nhau ( đpcm )

Khách vãng lai đã xóa
nguyen thanh tung
Xem chi tiết
le thi thuy dung
Xem chi tiết
Trần Đăng Nhất
10 tháng 1 2018 lúc 17:04

Gọi \(ƯCLN\left(2n+3,4n+1\right)=d\)
Ta có: \(\left\{{}\begin{matrix}2n+3⋮d\\4n+1⋮d\end{matrix}\right.\)
\(4n + 1− (4n + 6) = −5⋮d\)
Để 2n + 3 và 4n + 1 nguyên tố cùng nhau d = 1
Với 2n + 3 không chia hết cho 5 vì 2n + 3 có tận cùng khác 0 và 5.
2n có tận cùng khác 7 và 2; n có tận cùng khác 1 và 6
Với 4n + 1 không chia hết cho 5 vì 4n + 1 có tận cùng khác 0 và 5
4n có tận cùng khác 9 và 4, n có tận cùng khác 1 và 6
Vậy n có tận cùng khác 1 và 6.

Phạm Ngọc Mai
Xem chi tiết
Giang シ)
7 tháng 11 2021 lúc 19:11

b, Gọi d =  ƯCLN(4n+3;2n+3)

=> (4n+3) ⋮ d; 2(2n+3) ⋮ d

=> [(4n+6) – (4n+3)] ⋮ d

=> 3 ⋮ d => d = {1;3}

Nếu d = 3 thì (4n+3) ⋮ 3 => [3(n+1)+n] ⋮ 3 => n ⋮ 3 => n = 3k

Vậy để 4n+3 và 2n+3 nguyên tố cùng nhau thì n ≠ 3k

Khách vãng lai đã xóa
Pham Ngoc Mai
Xem chi tiết
Tran Thi Xuan
Xem chi tiết
Nguyễn Ngọc Quý
9 tháng 1 2016 lúc 17:54

Đặt UCLN(2n + 3 ; 4n + 8) = d

2n + 3 chia hết cho d => 4n + 6 chia het cho d

< = > [(4n + 8) - (4n + 6)] chia hết cho d

2 chia hết cho d mà 2n + 3 lẻ 

=> UCLN(2n  + 3 ; 4n + 8) = 1 

 

Bùi Thùy Linh
9 tháng 1 2016 lúc 18:03

Vì 2n+3 và 4n+8 nguyên tố cùng nhau nên có : ƯCLN ( 2n+3 , 4n+8 ) = 1

Có : 2n + 3 = 2n.2+3.2

                 = 4n    +6

Lại có :  (4n+8) - (4n+6) chia hết cho d

          =      2            chia hết cho d

Nhưng 2 là số lẻ nên ƯCLN ( 2n+3,4n+8)=1

Vậy 2n+3 và 4n+8 nguyên tố cùng nhau 

   Tick cho mình nha !!!!!!! 

Minh Nguyễn Lê Nhật
Xem chi tiết
Đinh Đức Hùng
28 tháng 12 2016 lúc 17:11

Gọi d là ƯC (n + 1; 3n + 4) Nên ta có :

n + 1 ⋮ d và 3n + 4 ⋮ d

<=> 3 (n + 1) ⋮ d và 3n + 4 ⋮ d

<=> 3n + 3 ⋮ d và 3n + 4 ⋮ d

=> (3n + 4) - (3n + 3) ⋮ d

=> 1 ⋮ d => d = 1

Vì ƯC (n + 1; 3n + 4) = 1 nên n + 1 và 3n + 4 là NT cùng nhau ( dpcm )

Ý 2 tương tự

Nguyễn Quang Tùng
28 tháng 12 2016 lúc 17:12

gọi ước chung lớn nhất của n+1 và 3n+4 là d 

ta có n+1 chia hết cho d => 3(n+1) chia hết cho d => 3n+ 3 chia  hết cho d

3n+4 chia hết cho d

=> 3n+4 - ( 3n + 3) chia hết cho d

=> 3n +4 - 3n - 3 chia hết cho d

=> 1 chia hết cho d

=> d = 1

vậy..............

Nguyễn Quang Tùng
28 tháng 12 2016 lúc 17:14

gọi ước chung lớn nhất của ...............là d

ta có 2n + 3 chia hết cho d 

=> 2(2n+3) chia hết cho d 

=> 4n + 6 chia hết cho d

4n + 8 chia hết cho d

=> 4n + 8 - ( 4n + 6) chia hết cho d

=> 4n + 8 - 4n -6 chia hết cho d

=> 2 chia hết cho d 

=> d = 1 hoặc d = 2

mà 2n +3 là số lẻ nên không chia hết cho 2 

=> d = 1

vậy ...........

Bùi Ngọc Tân
Xem chi tiết
Bùi phương anh
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
7 tháng 9 2020 lúc 12:00

1. a là số tự nhiên chia 5 dư 1

=> a = 5k + 1 ( k thuộc N )

b là số tự nhiên chia 5 dư 4

=> b = 5k + 4 ( k thuộc N )

Ta có ( b - a )( b + a ) = b2 - a2

                                   = ( 5k + 4 )2 - ( 5k + 1 )2

                                   = 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )

                                   = 25k2 + 40k + 16 - 25k2 - 10k - 1

                                   = 30k + 15

                                   = 15( 2k + 1 ) chia hết cho 5 ( đpcm )

2. 2n2( n + 1 ) - 2n( n2 + n - 3 )

= 2n3 + 2n2 - 2n3 - 2n2 + 6n

= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )

3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1

= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1

= 3n - 2n2 - 4n2 + 3n + 1 - 1

= -6n2 + 6n

= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )

Khách vãng lai đã xóa