cho b = 3+3 mũ 3 + 3 mũ 5 + ........+3 mũ 1991
chứng minh b chia hết cho 13
giúp mình cái nha mai cô kiểm tra rồi
giúp mình với mai cô kiểm tra. So sánh :
A = 1 + 3 + 3 mũ 2 + ... + 3 mũ 10 / 1 + 3 + 3 mũ 2 + ... + 3 mũ 9
B = 1 + 2 + 2 mũ 2 +... + 2 mũ 10 / 1+ 2 + 2 mũ 2 + ... + 2 mũ 9
Mình không biết làm và đồng thời mình cũng là người mới gia nhập online math nên còn nhiều điều chưa biết, mong các bạn giúp đỡ. Các bạn làm bài trên giúp mình với. thanks các bạn nhiều. Ai nhanh nhất và đúng mình sẽ k cho nhé yêu các bạn
Mình làm đc rùi nè
So sánh các lũy thừa sau
a, 8 mũ 10 và 1024 mũ 3
b,25 mũ 7 và 125 mũ 3
c, 49 mũ 10 và 625 mũ 5
CÁC BẠN GIÚP MÌNH CÁI NHA
MAI MÌNH PHẢI NẠP CHO CÔ RỒI!!!!!
a, Ta có:\(8^{10}=\left(2^3\right)^{10}=2^{30}\)
\(1024^3=\left(2^{10}\right)^3=2^{30}\)
Vậy \(8^{10}=1024^3\)
b, Dựa theo ý a nhưng cơ số là 5\(\Rightarrow25^7>125^3\)
c, Ta có: \(49^{10}\)giữ nguyên
\(625^5=\left(25^2\right)^5=25^{10}\)
3+3 mũ 2+...+3 mũ 60 chứng minh chia hết cho 13
giúp cho mình với bạn nào làm được mình kick cho 3 cái
\(3+3^2+3^3+...+3^{60}\)
\(=3\cdot\left(1+3+3^2\right)+3^4\cdot\left(1+2+3^2\right)+...+3^{58}\cdot\left(1+3+3^2\right)\)
\(=3\cdot13+3^4\cdot13+...+3^{58}\cdot13\)
\(=13\cdot\left(3+3^4+...+3^{58}\right)⋮13\left(đpcm\right)\)
3 + 32 + .... + 360
= ( 3 + 32 + 33 ) + ...... + ( 358 + 359 + 360 )
= 3 . ( 1 + 3 + 32 ) + ..... + 358 . ( 1 + 3 + 32 )
= 3 . 13 + ...... + 358 . 13
= 13 . ( 3 + .... + 358 )
Vì 13 \(⋮\)13
=> 13 . ( 3 + .... + 358 ) \(⋮\)13
Vậy _
1.Tìm số nguyên x:
b) (x-13-14)=(-3)mũ 2 -13
c) /2-x / = 4
2.n thuộc Z
n+5 chia hết cho n
GIÚP MK VS, MAI MK KIỂM TRA 1 TIẾT RỒI!!!!!!
Chứng minh 3 mũ 1 + 3 mũ 2 + 3 mũ 3 + 3 mũ 4 + 3 mũ 5 + 3 mũ 6 +...+ 3 mũ 2009 + 3 mũ 2010 Chia hết cho 13
( Giúp mình với ạ )
k mik nha
Số các số hạng là : ( 2010 - 1 ) : 1 + 1 = 2010 ( số )
Vì 2010 chia hết cho 3 nên ta nhóm 3 số vào 1 nhóm.
Ta có: ( 3 mũ 1 + 3 mũ 2 + 3 mũ 3 ) + ( 3 mũ 4 + 3 mũ 5 + 3 mũ 6 ) +........+ ( 3 mũ 2008 + 3 mũ 2009 + 3 mũ 2010 )
3 mũ 1*(1+3+9)+3 mũ 4*(1+3+9)+........+3 mũ 2008*(1+3+9)
3 mũ 1*13 + 3 mũ 4*13 + .........+ 3 mũ 2008*13
(3 mũ 1+3 mũ 4+......+3 mũ 2008)*13
Vì 13 chia hết cho 13 nên ( 3 mũ 1+3 mũ 4+3 mũ 2008 ) chia hết cho 13 hay ( đẳng thức của đề bài cho ) chia hết cho 13.
31 + 32 + 33 + 34 + 35 + 36 + ... + 32009 + 32010
= ( 31 + 32 + 33 ) + ( 34 + 35 + 36 ) + ... + ( 32008 + 32009 + 32010 )
= 3( 1 + 3 + 32 ) + 34( 1 + 3 + 32 ) + ... + 32008( 1 + 3 + 32 )
= 3.13 + 34.13 + ... + 32008.13
= 13( 3 + 34 + ... + 32008 ) chia hết cho 13 ( đpcm )
Chứng minh : A = 2mũ 1 + 2 mũ 2 + 2 mũ 3 + 2mũ 4 + ...+ 2 mũ 2010 chia hết cho 3&7
Chứng minh : C = 3 mũ 1 + 3 mũ 2 + 3 mũ 3 + 3 mũ 4 + ....+ 2 mũ 2010 chia hết cho 4 và 13
Chứng minh : B = 5 mũ 1 + 5 mũ 2 + 5 mũ 3 + 5 mũ 4 +.....+ 5 mũ 2010 chia hết cho 6 và 31
Chứng minh : D = 7 mũ 1 + 7 mũ 2 + 7 mũ 3 + 7 mũ 4 +.....+ 7 mũ 2010 chia hết cho 8 và 57
*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)
\(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)
\(=6\times\left(2^2+2^3+...+2^{2008}\right)\)
\(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)
\(\Rightarrow A⋮3\)
*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)
\(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(\Rightarrow A⋮7\)
Mình sửa lại đề C 1 chút xíu
*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)
\(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)
\(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(\Rightarrow C⋮4\)
Các câu khác làm tương tự nhé. Chúc bạn học tốt!
Giải:
A= 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 +....+ 2 mũ 2010
A= (2 + 2 mũ 2) + (2 mũ 3 + 2 mũ 4) +....+ (2 mũ 2009 + 2 mũ 2010)
A= 2(1 + 3) + 2 mũ 3 (1 + 2) + 2 mũ 2009 (1 +2_
A= 2.3 + 2 mũ 3.3 +....+ 2 mũ 2009.3
A= 3.(2 + 2 mũ 3 +....+ 2 mũ 2009) chia hết cho 3
A= (2 + 2 mũ 2 + 2 mũ 3) + (2 mũ 4 + 2 mũ 5 + 2 mũ 6) +....+ (2 mũ 2008 + 2 mũ 2009 + 2 mũ 2010)
A= 2(1 + 2 + 2 mũ 2) + 2 mũ 4(1+ 2 + 2 mũ 2) +...+ 2 mũ 2008.(1 + 2 + 2 mũ 2)
A= 2.7 + 2 mũ 4. 7 +.... + 2 mũ 2008.7
A= 7.(2 + 2 mũ 4 +....+ 2 mũ 22010 chia hết cho 7.
Các câu còn lại làm tương tự như câu a nha bạn!
CHỨNG MINH RẰNG
A = 2 + 2 mũ 2 + 2 mũ 3 + ......+ 2 mũ 60 chia hết cho 3,7,15
B= 3 +3 mũ 3 + 3 mũ 5 +.........+3 mũ 1991 chia hết cho 13 , 41
D= 11 mũ 9 + 11 mũ 8 + 11 mũ 7 +.........+11 +1 chia hết cho 5
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+..+\left(2^{59}+2^{60}\right)=3.2+3.2^3+3.2^5+..+3.2^{59}\) Vậy A chia hết cho 3
\(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+..+\left(2^{58}+2^{59}+2^{60}\right)=7.2+7.2^4+..+7.2^{58}\) Vậy A chia hết cho 7
\(A=\left(2+2^2+2^3+2^4\right)+..+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)=2.15+2^5.15+..+2^{57}.15\) Vậy A chia hết cho 15.
\(B=\left(3+3^3+3^5\right)+..+\left(3^{1987}+3^{1989}+3^{1991}\right)=3.91+3^7.91+..+3^{1986}.91\)
mà 91 chia hết cho 13 nên B chia hết cho 13.
\(B=\left(3+3^3+3^5+3^7\right)+..+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)=3.820+3^9.820+..+3^{1985}.820\)Mà 820 chia hết cho 41 nên B chia hết cho 41.
D : để ý rằng \(11^k\) đều có đuôi là 1
nên D có đuôi là đuôi của \(1+1+..+1=10\)
Vậy D chia hết cho 5
1 Cho n(n+1) là tích 2 số tự nhiên liên tiếp thì chia hết cho 2 .
Chứng minh: a, 3n mũ 2 + n chia hết b, (4n mũ 2 + 4n ) + 8n + 16 chia hết 8
2 ,Chứng minh:C = 1 + 3 + 3 mũ 2 + 3 mũ 3 + .........+ 3 mũ 11 chia hết 13
3 , Tìm số dư của : a, 2004 mũ 2004 khi chia cho 11 b, 776 mũ 776 + 777 mũ 777 + 778 mũ 778 khi chia cho 3 , 5
4 , Chứng minh : 9 mũ 2002 - 1 chia hết 18
5 , Chứng minh : 7 mũ 214 - 4 chia hết 3
6 , Chứng minh : 4 mũ 200 + 3 mũ 1002 chia hết 13
cho mik hỏi câu này nữa a= 2+2 mũ 3 + 2 mũ 5 +.....+2 mũ 51
bài 2 tính rồi viết kết quả dưới dạng 1 lũy thừa
a, A = 3 mũ 2 . 4 mũ 3 - 3 mũ 2 + 333
b, B = 5 . 4 mũ 3 + 2 mũ 4 . 5 + 41
các bạn giúp mình nha ngày mai mình phải nộp cho thầy rồi
a, A = 32 . 43 - 32 + 333
= 32 (43 - 1) + 333
= 9 . 63 + 333
= 567 + 333
= 900 = 302
b, B = 5 . 43 + 24 . 5 + 41
= 5 . 64 + 16 . 5 + 41
= 5 (64 + 16) + 41
= 400 + 41
= 441 = 212