chứng tỏ rằng
a,34.2+1+2 chia hết cho 5(n thuộc N)
b,92.n+1+1 chia hết cho 10 (n thuộc N)
a) Chứng tỏ (17^n+2).(17^n+1) chia hết cho 3 với mọi n thuộc N
b) Chứng tỏ (9^m+1)(9^m+2)(9^m+3)(9^m+4) chia hết cho 5 với n thuộc N
1.chứng tỏ rằng:
a) 5n-1 chia hết cho 4 (với n thuộc N*)
b) 10n+18n-1chia hết cho 27
2.tìm n thuộc N, biết
a) 15-4.n chia hết cho n
b) n+13 chia hết cho n-5 (n>5)
c) 15-2.n chia hết cho n+1 (n<=7)
d) 6.n+9 chia hết cho 4.n+1 (n>=1)
1) Chứng tỏ rằng :(17^n+1)(17^n+2)chia hết cho 3 với mỗi n thuộc N
2)Chứng tỏ rằng : (9^m+9)(9^m+2)chia hết cho 5 với mỗi m thuộc N
Cho n thuộc N. Chứng tỏ rằng
(n + 10) . (n + 5) chia hết 2
n(n + 1)(n + 2) chia hết 2 và 3
n(n + 1)(2n + 1) chia hết 2 và 3
ghi cách làm nha
a) TH1 : n chẵn => n + 10 chia hết 2
TH2 : n lẻ => n + 5 chẵn => chia hết 2
b) Do là tích 3 số tự nhiên liên tiếp nên sẽ có 1 số chia hết 2 và 1 số chia hết 3
c) Do n(n+1) là tích 2 số tự nhiên liên tiếp => Chia hết 2
TH1 : n = 3k => chia hết 3
TH2 : n = 3k +1 => 2n +1 = 6k + 2 +1 = 6k +3 chia hết 3
TH3 : n = 3k + 2 => n + 1 = 3k + 3 chia hết 3
=> ĐPCM
a ) Ta có 2 trường hợp :
TH1 : n là lẻ
Nếu n là lẻ thì ( n + 15 ) là chẵn chia hết cho 2 . Vậy ( n + 10 ) x ( n + 15 ) chia hết cho 2
TH2 : n là chẵn
Nếu n là chẵn thì ( n + 10 ) là chẵn chia hết cho 2 . Vậy ( n + 10 ) x ( n + 15 ) chia hết cho 2
b ) Ta có n , n + 1 , n + 2 là ba số tự nhiên ( hoăc số nguyên ) liên tiếp nên trong ba số đó chắc chắn có một số chẵn nên n( n + 1 ) ( n + 2 ) chia hết cho 2
Ta có n , n + 1 , n + 2 là ba số tự nhiên ( hoặc số nguyên ) liên tiếp nên khi chia cho 3 sẽ có ba số dư khác nhau là là 0 , 1 , 2 nên n( + 1) ( n + 2 ) chia hết cho 3
c ) n( n + 1 ) ( 2n + 1 ) = n ( n + 1 ) ( n + 2 + n - 1 ) = n( n + 1 ) ( n + 2 ) + ( n - 1 ) ( n + 1 ) n
Ba số tự nhiên liên tiếp thì chia hết cho 2 , chia hết cho 3
8^102-2^102 chia hết cho 10
9^n+1 chia hết cho 10 n thuộc N
2^4n+1 chia hết cho 5 n thuộc N
3^4n+1+2 chia hết cho 5 n thuộc N
bài này là chứng minh đó
cho n thuộc N , chứng tỏ n2 + n +1 ko chia hết cho 4 và ko chia hết cho 5.
bạn bấm vào dòng chữ xanh này nhé
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
1. Chứng minh rằng:
a. 2^51 - 1 chia hết cho 7
b. 2^70 + 3^70 chia hết cho 13
c. 17^19 + 19^17 chia hết cho 18
d. 36^63 - 1 chia hết cho 7 nhưng không chia hết cho 37
e. 2^4n - 1 chia hết cho 15 với n thuộc N
2. Chứng minh rằng:
a. n^5 - n chia hết cho 30 với n thuộc N
b. n^4 - 10n^2 + 9 chia hết cho 384 với mọi n lẻ n thuộc Z
c. 10^n + 18n - 28 chia hết cho 27 với n thuộc N
3. Chứng minh rằng:
a. a^5 - a chia hết cho 5
b. n^3 + 6n^2 + 8n chia hết cho 48 với mọi n chẵn
c. Cho a là số nguyên tố lớn hơn 3. Chứng minh: a^2 - 1 chia hết cho 24
d. 2009^2010 không chia hết cho 2010
e. n^2 + 7n + 22 không chia hết cho 9
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
1. Chứng minh rằng:
a. 2^51 - 1 chia hết cho 7
b. 2^70 + 3^70 chia hết cho 13
c. 17^19 + 19^17 chia hết cho 18
d. 36^63 - 1 chia hết cho 7 nhưng không chia hết cho 37
e. 2^4n - 1 chia hết cho 15 với n thuộc N
2. Chứng minh rằng:
a. n^5 - n chia hết cho 30 với n thuộc N
b. n^4 - 10n^2 + 9 chia hết cho 384 với mọi n lẻ n thuộc Z
c. 10^n + 18n - 28 chia hết cho 27 với n thuộc N
3. Chứng minh rằng:
a. a^5 - a chia hết cho 5
b. n^3 + 6n^2 + 8n chia hết cho 48 với mọi n chẵn
c. Cho a là số nguyên tố lớn hơn 3. Chứng minh: a^2 - 1 chia hết cho 24
d. 2009^2010 không chia hết cho 2010
e. n^2 + 7n + 22 không chia hết cho 9
1.cho A=n2+n+6. chứng tỏ A chia hết cho 5 với mọi n thuộc N
2.chứng tỏ với mọi n thuộc N thì (2x+1+2x+2+......+2x+40) chia hết cho 30