b, Vì 9^n với n bất kì đc số tận cùng =9
=>9^2n+1+1=...9+1=...0
Có tận cùng =0 suy ra 9^2n+1+1 chi hết cho 10(đpcm)
b, Vì 9^n với n bất kì đc số tận cùng =9
=>9^2n+1+1=...9+1=...0
Có tận cùng =0 suy ra 9^2n+1+1 chi hết cho 10(đpcm)
a) Chứng tỏ (17^n+2).(17^n+1) chia hết cho 3 với mọi n thuộc N
b) Chứng tỏ (9^m+1)(9^m+2)(9^m+3)(9^m+4) chia hết cho 5 với n thuộc N
1.chứng tỏ rằng:
a) 5n-1 chia hết cho 4 (với n thuộc N*)
b) 10n+18n-1chia hết cho 27
2.tìm n thuộc N, biết
a) 15-4.n chia hết cho n
b) n+13 chia hết cho n-5 (n>5)
c) 15-2.n chia hết cho n+1 (n<=7)
d) 6.n+9 chia hết cho 4.n+1 (n>=1)
Cho n thuộc N. Chứng tỏ rằng
(n + 10) . (n + 5) chia hết 2
n(n + 1)(n + 2) chia hết 2 và 3
n(n + 1)(2n + 1) chia hết 2 và 3
ghi cách làm nha
8^102-2^102 chia hết cho 10
9^n+1 chia hết cho 10 n thuộc N
2^4n+1 chia hết cho 5 n thuộc N
3^4n+1+2 chia hết cho 5 n thuộc N
bài này là chứng minh đó
cho n thuộc N , chứng tỏ n2 + n +1 ko chia hết cho 4 và ko chia hết cho 5.
1.cho A=n2+n+6. chứng tỏ A chia hết cho 5 với mọi n thuộc N
2.chứng tỏ với mọi n thuộc N thì (2x+1+2x+2+......+2x+40) chia hết cho 30
Bài 1Dùng 3 trong 4 số 5;4;3;2,hãy viết tất cả các số tự nhiên có 3 chữ số chia hết cho cả 3 số 2;3 và 9.
Bài 2 chứng tỏ rằng :
a) 1033+8 chia hết cho 18
b) 1010+14 chia hết cho 6
Bài 3 Chứng tỏ rằng với mọi số tự nhiên n,tích (n+7).(n+8) luôn chia hết cho 2
Bài 4 Cho n thuộc N*. Chứng tỏ rằng
a) (5n -1) chia hết cho 4
b) (10n + 18n - 1) chia hết cho 27
Chứng tỏ rằng ,các số có dạng :
a, A=22n - 1 chia hết cho 5 ( n thuộc N ,n lớn hơn hoặc bằng 2)
b, B=24n +4 chia hết cho10 ( n thuộc N , n lớn hơn hoặc bằng 1)
c, H=92n +3 chia hết cho 2 ( n thuộc N , n lớn hơn hoặc bằng 1 )
1) a, Chứng tỏ ràng :với mọi số tự nhiên n thuộc N thì n^2+n+1 chia hết cho 5
b,Chứng tỏ ràng :số a=9^11+1chia hết cho 2 và 5
c,Chứng tỏ ràng :tích n nhân (n+3)là số chãn với mọi n thuộc N