Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bình Bình
Xem chi tiết
Mr Lazy
14 tháng 7 2015 lúc 17:06

Với số nguyên dương n, ta có: 

\(1+n^2+\left(\frac{n}{n+1}\right)^2=\frac{\left(n+1\right)^2+n^2\left(n+1\right)^2+n^2}{\left(n+1\right)^2}=\frac{n^2+2n+1+n^2+n^2\left(n+1\right)^2}{\left(n+1\right)^2}\)

\(=\frac{n^2\left(n+1\right)^2+2n\left(n+1\right)+1}{\left(n+1\right)^2}=\frac{\left[n\left(n+1\right)+1\right]^2}{\left(n+1\right)^2}=\left(\frac{n^2+n+1}{n+1}\right)^2\)

\(\Rightarrow\sqrt{1+n^2+\left(\frac{n}{n+1}\right)^2}=\frac{n^2+n+1}{n+1}=n+\frac{1}{n+1}\)

\(\Rightarrow P=\left(1999+\frac{1}{2000}\right)+\frac{1999}{2000}=1999+1=2000\)

 

Phùng Minh Quân
5 tháng 12 2018 lúc 20:55

Cách ez hđt lp 8 nhé 

\(P=\sqrt{\left(1+2.1999+1999^2\right)-2.1999+\frac{1999^2}{2000^2}}+\frac{1999}{2000}\)

\(P=\sqrt{\left(1+1999\right)^2-2.1999+\frac{1999^2}{2000^2}}+\frac{1999}{2000}\)

\(P=\sqrt{2000^2-2.1999+\frac{1999^2}{2000^2}}+\frac{1999}{2000}\)

\(P=\sqrt{\left(2000-\frac{1999}{2000}\right)^2}+\frac{1999}{2000}\)

\(P=\left|2000-\frac{1999}{2000}\right|+\frac{1999}{2000}=2000-\frac{1999}{2000}+\frac{1999}{2000}=2000\)

... 

Dương Phạm Tùng
Xem chi tiết
nguyễn văn thái
Xem chi tiết
Ngu Người
11 tháng 10 2015 lúc 21:16

\(\frac{1}{n\sqrt{n+1}+\sqrt{n}\left(n+1\right)}=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}\)

sau đó tách ra là ok

La Huỳnh Mai Thảo
Xem chi tiết
Đào Trọng Luân
23 tháng 5 2017 lúc 19:20

\(\frac{A}{B}=\frac{\frac{2000}{1}+\frac{1999}{2}+...+\frac{1}{2000}+2000}{1+\frac{1999}{2}+\frac{1998}{3}+...+\frac{1}{2000}}\)

\(=\frac{\left[\frac{2001}{1}+1\right]+\left[\frac{2001}{2}+1\right]+...+\left[\frac{2001}{2000}+1\right]+2001}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2000}}\)

\(=\frac{2001\left[1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2000}\right]}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2000}}=2001\)

Đào Trọng Luân
23 tháng 5 2017 lúc 19:10

$\ge $ 

 TNT TNT Học Giỏi
23 tháng 5 2017 lúc 19:15

là sao?

cho mình hỏi và đề đâu

Đặng Anh Quế
Xem chi tiết
trần việt hoàng
24 tháng 10 2017 lúc 19:28

ed aakrta9 rf, j,ear ,eru8refj eru jrae ear9ffnxvn 

Lê Thành Đạt
Xem chi tiết
Aphrodite
Xem chi tiết
Nguyễn Thị Thu Huyền
8 tháng 3 2017 lúc 14:40

TẦM NHƯ HƠI CĂNG

Đinh Đức Hùng
8 tháng 3 2017 lúc 14:49

\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}{\frac{1999}{1}+\frac{1998}{2}+\frac{1997}{3}+....+\frac{1}{1999}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2000}}{1+\left(\frac{1998}{2}+1\right)+\left(\frac{1997}{3}+1\right)+....+\left(\frac{1}{1999}+1\right)}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}{\frac{2000}{2}+\frac{2000}{3}+\frac{2000}{4}+....+\frac{2000}{2000}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}{2000\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}\right)}\)

\(=\frac{1}{2000}\)

Trần Thị Phương Nhi
Xem chi tiết
Thánh Ca
27 tháng 8 2017 lúc 15:56

Gọi 1/4 số a là 0,25 . Ta có :

                   a . 3 - a . 0,25 = 147,07

                   a . (3 - 0,25) = 147,07 ( 1 số nhân 1 hiệu )

                      a . 2,75 = 147,07

                         a = 147,07 : 2,75

                          a = 53,48

le thi khanh huyen
Xem chi tiết
Incursion_03
1 tháng 10 2018 lúc 23:48

Với a , b , c là số hữu tỉ t/m a = b + c ta luôn có \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right|\in Q\)

Thật vậy : \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2-2\left(\frac{1}{bc}-\frac{1}{ac}-\frac{1}{ab}\right)}\)

                                                       \(=\sqrt{\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2-\frac{2.abc\left(a-b-c\right)}{a^2b^2c^2}}\)(quy đồng lên )

                                                         \(=\sqrt{\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2}\left(\text{do a-b-c=0}\right)\)

                                                          \(=\left|\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right|\in Q\)

Áp dụng ta được \(A=\left|\frac{1}{3}-\frac{1}{2}-1\right|+\left|\frac{1}{4}-\frac{1}{3}-1\right|+...+\left|\frac{1}{2000}-\frac{1}{1999}-1\right|\)là số hữu tỉ

Vậy A là số hữu tỉ