cho a,b,c,x,y,zkhac \
x/a=y/b=z/c chung minh rang (x^2+y^2+z^2)/(ax+by+cz)^2=1/(a^2+b^2+c^2)
bai 1 chung minh rang
nếu;(a^2+b^2+c^2)(x^2+y^2+z^2)=(ax+by+cz)^2
với x,y,x khac0 thi a\x=b\y=c\z
trả lời nhanh giúp mình nha
Ta có:
\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\)
\(\Leftrightarrow a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2=a^2x^2+b^2y^2+c^2z^2+2axby+2bycz+2axcz\)
\(\Leftrightarrow a^2y^2+a^2z^2+b^2x^2+b^2z^2+c^2x^2+c^2y^2-2axby-2bycz-2axcz=0\)
\(\Leftrightarrow\left(a^2y^2-2axby+b^2x^2\right)+\left(a^2z^2-2axcz+c^2x^2\right)+\left(b^2z^2-2bycz+c^2y^2\right)=0\)
\(\Leftrightarrow\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(bz-cy\right)^2=0\)
Vì \(\left(ay-bx\right)^2\ge0;\left(az-cx\right)^2\ge0;\left(bz-cy\right)^2\ge0\) nên
\(\Rightarrow\hept{\begin{cases}\left(ay-bx\right)^2=0\\\left(az-cx\right)^2=0\\\left(bz-cy\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}ay-bx=0\\az-cx=0\\bz-cy=0\end{cases}\Leftrightarrow}\hept{\begin{cases}ay=bx\\az=cx\\bz=cy\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{x}=\frac{b}{y}\\\frac{a}{x}=\frac{c}{z}\\\frac{b}{y}=\frac{c}{z}\end{cases}}\)( Theo tính chất của tỉ lệ thức : tích trung tỉ bằng tích ngoại tỉ)
\(\Leftrightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)( Với x, y, z khác 0)
Vậy \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)Với x, y, z khác 0
Ta có:
\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\)
\(\Leftrightarrow a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2=a^2x^2+b^2y^2+c^2z^2+2axby+2bycz+2axcz\)
\(\Leftrightarrow a^2y^2+a^2z^2+b^2x^2+b^2z^2+c^2x^2+c^2y^2-2axby-2bycz-2axcz=0\)
\(\Leftrightarrow\left(a^2y^2-2axby+b^2x^2\right)+\left(a^2z^2-2axcz+c^2x^2\right)+\left(b^2z^2-2bycz+c^2y^2\right)=0\)
\(\Leftrightarrow\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(bz-cy\right)^2=0\)
Vì \(\left(ay-bx\right)^2\ge0;\left(az-cx\right)^2\ge0;\left(bz-cy\right)^2\ge0\) nên
\(\Rightarrow\hept{\begin{cases}\left(ay-bx\right)^2=0\\\left(az-cx\right)^2=0\\\left(bz-cy\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}ay-bx=0\\az-cx=0\\bz-cy=0\end{cases}\Leftrightarrow}\hept{\begin{cases}ay=bx\\az=cx\\bz=cy\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{x}=\frac{b}{y}\\\frac{a}{x}=\frac{c}{z}\\\frac{b}{y}=\frac{c}{z}\end{cases}}\)( Theo tính chất của tỉ lệ thức : tích trung tỉ bằng tích ngoại tỉ)
\(\Leftrightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)( Với x, y, z khác 0)
Vậy \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)Với x, y, z khác 0
Ta có:
\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\)
\(\Leftrightarrow a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2=a^2x^2+b^2y^2+c^2z^2+2axby+2bycz+2axcz\)
\(\Leftrightarrow a^2y^2+a^2z^2+b^2x^2+b^2z^2+c^2x^2+c^2y^2-2axby-2bycz-2axcz=0\)
\(\Leftrightarrow\left(a^2y^2-2axby+b^2x^2\right)+\left(a^2z^2-2axcz+c^2x^2\right)+\left(b^2z^2-2bycz+c^2y^2\right)=0\)
\(\Leftrightarrow\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(bz-cy\right)^2=0\)
Vì \(\left(ay-bx\right)^2\ge0;\left(az-cx\right)^2\ge0;\left(bz-cy\right)^2\ge0\) nên
\(\Rightarrow\hept{\begin{cases}\left(ay-bx\right)^2=0\\\left(az-cx\right)^2=0\\\left(bz-cy\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}ay-bx=0\\az-cx=0\\bz-cy=0\end{cases}\Leftrightarrow}\hept{\begin{cases}ay=bx\\az=cx\\bz=cy\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{x}=\frac{b}{y}\\\frac{a}{x}=\frac{c}{z}\\\frac{b}{y}=\frac{c}{z}\end{cases}}\)( Theo tính chất của tỉ lệ thức : tích trung tỉ bằng tích ngoại tỉ)
\(\Leftrightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)( Với x, y, z khác 0)
Vậy \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)Với x, y, z khác 0
cho a+b+c = x+y+z = a/x + b/y + c/z = 0 chung minh ax^2 +by^2+cz^2 = 0
Do x + y + z = 0 nên
x = - (y + z) ; y = - (x + z) ; z = - (x + y)
=> x2 = (y + z)2 ; y2 = (x + z)2 ; z2 = (x + y)2
=> ax2 + by2 + cz2 = a(y2 + 2yz + z2) + b(x2 + 2xz + z2) + c(x2 + 2xy + y2) = x2(b + c) + y2(a + c) + z2(a + b) + 2(ayz + bxz + cxy) (1)
Thay a = - (b + c) ; b = - (a + c) ; c = - (a + b) (Do a + b + c = 0 ) và ayz+bxz+cxy=0 (do a/x+b/y+c/z=0) vào (1) ta được ax2 + by2 + cz2 = - (ax2 + by2 + cz2)
=> ax2 + by2 + cz2 = 0
cho x,y,z khac 0 va \(\frac{\left(ax+by+cz\right)^2}{x^2+y^2+z^2}=a^2+b^2+c^2\)
Chung minh rang \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
\(\frac{\left(ax+by+cz\right)^2}{x^2+y^2+z^2}=a^2+b^2+c^2\)
\(\Rightarrow\left(ax+by+cz\right)^2=\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\)
\(\Rightarrow a^2x^2+b^2y^2+c^2z^2+2abxy+2acxz+2bcyz\)\(=a^2x^2+b^2x^2+c^2x^2+a^2y^2+b^2y^2+c^2y^2+a^2z^2+b^2z^2+c^2z^2\)
\(\Rightarrow b^2x^2-2abxy+a^2y^2+b^2z^2-2bcyz+c^2y^2+a^2z^2-2acxz+c^2x^2=0\)
\(\Rightarrow\left(bx-ay\right)^2+\left(bz-cy\right)^2+\left(az-cx\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}bx-ay=0\\bz-cy=0\\az-cx=0\end{cases}\Rightarrow\hept{\begin{cases}bx=ay\\bz=cy\\az=cx\end{cases}\Rightarrow}\hept{\begin{cases}\frac{b}{y}=\frac{a}{x}\\\frac{b}{y}=\frac{c}{z}\\\frac{a}{x}=\frac{c}{z}\end{cases}\Rightarrow}\frac{a}{x}=\frac{b}{y}=\frac{c}{z}}\)
Cho biet x,y,z khac 0 va
\(\frac{\left(ax+by+cz\right)^2}{x^2+y^2+z^2}=a^2+b^2+c^2\)
Chung minh rang \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
\(\frac{\left(ax+by+cz\right)^2}{x^2+y^2+z^2}=a^2+b^2+c^2\Leftrightarrow\left(ax+by+cz\right)^2=\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\)
\(\Leftrightarrow a^2x^2+b^2y^2+c^2z^2+2\left(abxy+bcyz+cazx\right)=a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2\)\(\Leftrightarrow a^2y^2-2ay\cdot bx+b^2x^2+b^2z^2-2bz\cdot cy+c^2y^2+a^2z^2-2az\cdot cx+c^2x^2=0\)
\(\Leftrightarrow\left(ay-bx\right)^2+\left(bz-cy\right)^2+\left(az-cx\right)^2=0\)
mà \(\left(ay-bx\right)^2;\left(bz-cy\right)^2;\left(az-cx\right)^2\ge0\)nên \(\left(ay-bx\right)^2=\left(bz-cy\right)^2=\left(az-cx\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}ay=bx\\bz=cy\\az=cx\end{cases}\Leftrightarrow\frac{a}{x}}=\frac{b}{y}=\frac{c}{z}\left(x,y,z\ne0\right)\)(ĐPCM)
Bạn ko hiểu chỗ nào cứ hỏi lại mình nhé
Cho x,y,z #0 và (ax + by + cz) / x^2+y^2+z^2 = a^2+b^2+c^2
Chứng minh rằng a/x = b/y =c/z
Cho x,y,z #0 và (ax + by + cz) / x^2+y^2+z^2 = a^2+b^2+c^2
Chứng minh rằng a/x = b/y =c/z
x\a=y\b=z\c
chứg minh (x^2+y^2+ z^2 ) / (ax+by+cz) =1/(a^2+b^2+c^2)
cho 3 so thuc x,y,z khac khong va thoa man hai dieu kien \(ax^3=by^3=cz^3\) va \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\)
chung minh rang : \(\sqrt[3]{ax^2+by^2+cz^2}=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\)
Ta có \(ax^3=by^3=cz^3\Leftrightarrow\dfrac{ax^2}{\dfrac{1}{x}}=\dfrac{by^2}{\dfrac{1}{y}}=\dfrac{cz^2}{\dfrac{1}{z}}=\dfrac{ax^2+by^2+cz^2}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}=ax^2+by^2+cz^2\Leftrightarrow\sqrt[3]{ax^2+by^2+cz^2}=\sqrt[3]{ax^3}=\sqrt[3]{by^3}=\sqrt[3]{cz^3}=\dfrac{\sqrt[3]{a}}{\dfrac{1}{x}}+\dfrac{\sqrt[3]{b}}{\dfrac{1}{y}}+\dfrac{\sqrt[3]{c}}{\dfrac{1}{z}}=\dfrac{\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\)Vậy \(\sqrt[3]{ax^2+by^2+cz^2}=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\)
chứng minh nếu (a^2+b^2+c^2)(x^2+y^2+z^2)=(ax+by+cz)^2 với x,y,z khác 0 thì a/x=b/y=c/z
Phá ngoặc hết ra rồi phân tích thành tổng 3 bình phương.
Câu hỏi của nguyễn ngọc minh - Toán lớp 8 - Học toán với OnlineMath