Tìm tất cả các số tự nhiên n để P=\(\left(n^2-2n+1\right)\left(n^2-2n+2\right)+1\)là số nguyên tố
tìm tất cả các số tự nhiên n để P = \(\frac{n\left(n+1\right)\left(n+2\right)}{6}+1\) là số nguyên tố !!!!
tìm tất cả các số nguyên tố dạng \(\frac{1}{6}\times n\times\left(n+1\right)\times\left(n+2\right)+1\), với n là số tự nhiên n>=1
tìm tất cả các số nguyên có dạng :\(\frac{n\left(n+1\right)\left(n+2\right)}{6}+1\) với n là số tự nhiên
\(n\left(n+1\right)\left(n+2\right)⋮3\)
\(n\left(n+1\right)\left(n+2\right)⋮2\)
Có ƯCLN (2,3) = 1
Nên: \(n\left(n+1\right)\left(n+2\right)⋮2.3=6\)
Lại có: \(1=\frac{6}{6}⋮6\)
Vậy: \(\frac{n\left(n+1\right)\left(n+2\right)}{6}+1\)
1. Chứng minh 2n+5 và 4n+9 là hai số nguyên tố cùng nhau với mọi số tự nhiên n\
2. Tìm số tự nhiên n biết \(\left(3n+5\right)⋮\left(2n+1\right)\)
3 . Cho a+7b chia hết cho 11. Chứng minh rằng 8a+b chia hết cho 11
Mọi người ơi trả lời hộ mình câu 3 nhé. cám ơn nhiều
Tìm tất cả kết quả nguyên tố của \(\frac{n\left(n+1\right)\left(n+2\right)}{6}+1\) với n là số tự nhiên
- Với n = 0 thì n(n+1)(n + 2) = 0 nên \(\frac{0}{2}+1=1\), ko phải là số nguyên tố
- Với n = 1 thì n + 1 = 2 ; n + 2 = 3. Khi đó \(\frac{n\left(n+1\right)\left(n+2\right)}{2}+1=\frac{1.2.3}{2}+1=4\), không phải số nguyên tố
- Với n = 2 thì n + 1 = 3 ; n + 2 = 4.Khi đó \(\frac{n\left(n+1\right)\left(n+2\right)}{6}+1=\frac{2.3.4}{6}+1=5\), là số nguyên tố
- Với n = 3 thì n + 1 = 4 ; n + 2 = 5.Khi đó \(\frac{n\left(n+1\right)\left(n+2\right)}{6}+1=\frac{3.4.5}{6}+1=11\), là số nguyên tố
- Với n \(\ge\) 4 thì n + 1 \(\ge\) 5 ; n + 2 \(\ge\) 6. Khi đó \(\frac{n\left(n+1\right)\left(n+2\right)}{6}+1\ge\frac{4.5.6}{6}+1=21\)
, luôn là hợp số.
Vậy chỉ có kết quả là 5 và 11 là thỏa mãn.
thì bạn phải chỉ rõ, lí luận chứ lỡ đâu cũng trong muôn vàn số vẫn có trường hợp đặc biệt
Tìm tất cả kết quả nguyên tố của \(\frac{n\left(n+1\right)\left(n+2\right)}{6}+1\) với n là số tự nhiên
cho f(x)=(x2+x+1)2+1 với mọi x thuộc N.
a)tìm x để f(x) là số tự nhiên
b)thu gọn:
Pn=\(\frac{f\left(1\right).f\left(3\right).....f\left(2n-1\right)}{f\left(2\right).f\left(4\right).....f\left(2n\right)}\) với n thuộc N*
Tìm các số tự nhiên m,n biết :
a) \(\left(-\dfrac{1}{5^{ }}\right)^n\) =\(-\dfrac{1}{125}\)
b)\(\left(-\dfrac{2}{11^{ }}\right)^m=\dfrac{4}{121}\)
c)\(7^{2n}+7^{2n+2}=2450\)
c)\(7^{2n}+7^{2n+2}=2450\)
⇒\(7^{2n}+7^{2n}.7^2=2450\)
⇒\(7^{2n}.50=2450\)
⇒\(7^{2n}=49\)\(=7^2\)
⇒2n=2
⇒n=1
a)\(\left(-\dfrac{1}{5}\right)^n=-\dfrac{1}{125}\) b)\(\left(-\dfrac{2}{11}\right)^m=\dfrac{4}{121}\)
\(\left(-\dfrac{1}{5}\right)^n=\left(-\dfrac{1}{5}\right)^3\) \(=\left(-\dfrac{2}{11}\right)^m=\left(-\dfrac{2}{11}\right)^2\)
⇒n=3 ⇒m=2
Tìm số tự nhiên \(n\) để
a) \(\left(n^2-15\right)^2+64\) là số nguyên tố
b) \(n^3-2n^2-3\) là số nguyên tố