Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sakura Kinomoto
Xem chi tiết
Sakura Kinomoto
1 tháng 5 2017 lúc 16:59

Thêm điều kiện là a,b cùng dấu nha! mình đánh thiếu

Phạm Nguyễn Hùng Nguyên
Xem chi tiết
Hoàng Tử Lớp Học
Xem chi tiết
alibaba nguyễn
1 tháng 12 2016 lúc 21:32

\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

\(\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=0\)

\(\Leftrightarrow x+y+z=0\)

Ta có 

\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)

\(\Rightarrow x^3+y^3+z^3=3xyz\)

=> ĐPCM

Lê Ngọc Quyên
1 tháng 12 2016 lúc 20:55

Mạnh Hùng hỏi được rồi á

Tạ Đức Hoàng Anh
13 tháng 1 2021 lúc 14:50

Ta có: \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)

   \(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)

   \(\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=0\)

   \(\Leftrightarrow\frac{a+b+c}{abc}=0\)

Mà \(a,b,c\)là số nguyên khác 0 \(\Rightarrow\)\(abc\ne0\)\(\Rightarrow\)\(a+b+c=0\)\(\Rightarrow a+b=-c\)

Ta lại có: \(a^3+b^3+c^3=\left(a+b\right)^3+c^3-3ab\left(a+b\right)\)

                                          \(=\left(a+b+c\right)^3-3.\left(a+b\right).c.\left(a+b+c\right)-3ab\left(a+b\right)\)

                                          \(=0-0-3ab\left(-c\right)\)

                                          \(=3abc⋮3\)

Vậy \(a^3+b^3+c^3=3abc⋮3\)\(\Leftrightarrow\)\(a+b+c=0\)

Khách vãng lai đã xóa
Thủy Phạm Thanh
Xem chi tiết
Phan Quang Thái
Xem chi tiết
chu van anh
15 tháng 12 2016 lúc 17:57

mình nghĩ đề bài sai một chỗ :\(\frac{a^2}{b^2}\)chứ ko phải là \(\frac{a}{b^2}\)

doan huong tra
10 tháng 5 2017 lúc 13:36

khó quá chưa học

ngodanghoang
10 tháng 5 2017 lúc 13:52

mình chịu thôi bạn ơi mình mới học lớp 5 ak

D.Khánh Đỗ
Xem chi tiết
Chu Công Đức
31 tháng 1 2020 lúc 16:26

\(a+b=1\)\(\Rightarrow\hept{\begin{cases}a-1=-b\\b-1=-a\end{cases}}\)

Ta có: \(\frac{a}{b^3-1}-\frac{b}{a^3-1}=\frac{a}{\left(b-1\right)^3+3b\left(b-1\right)}-\frac{b}{\left(a-1\right)^3+3a\left(a-1\right)}\)

\(=\frac{a}{-a^3-3ab}-\frac{b}{-b^3-3ab}=\frac{a}{-a\left(a^2+3b\right)}-\frac{b}{-b\left(b^2+3a\right)}\)

\(=\frac{-1}{a^2+3b}-\frac{-1}{b^2+3a}=\frac{-1}{a^2+3b}+\frac{1}{b^2+3a}=\frac{-\left(b^2+3a\right)+a^2+3b}{\left(a^2+3b\right)\left(b^2+3a\right)}\)

\(=\frac{-b^2-3a+a^2+3b}{a^2b^2+3a^3+3b^3+9ab}=\frac{-\left(b^2-a^2\right)+\left(3b-3a\right)}{a^2b^2+3\left(a^3+b^3\right)+9ab}\)

\(=\frac{-\left(b-a\right)\left(b+a\right)+3\left(b-a\right)}{a^2b^2+3\left[\left(a+b\right)^3-3ab\left(a+b\right)\right]+9ab}=\frac{-\left(b-a\right)+3\left(b-a\right)}{a^2b^2+3\left[1-3ab\right]+9ab}\)

\(=\frac{2\left(b-a\right)}{a^2b^2+3-9ab+9ab}=\frac{2\left(b-a\right)}{a^2b^2+3}\left(đpcm\right)\)

Khách vãng lai đã xóa
Hello Hello
Xem chi tiết
Nguyễn Hoàng Anh Thư
Xem chi tiết
Lê Hữu Minh
Xem chi tiết