Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoangnguyen Nguyen Hoang...
Xem chi tiết
vũ tiền châu
Xem chi tiết
xuka
Xem chi tiết
Sông Ngân
Xem chi tiết
T.Anh 2K7(siêu quậy)(тoá...
30 tháng 5 2021 lúc 16:37

Gọi AD,BE,CF lần lượt là đường cao cảu tam giác ABC,mà H là trực tâm của tam giác ABC nên AD,BE,CF đồng quy tại H

Ta có:\(\widehat{HAM}=90^0-\widehat{AHE}=90^0-\widehat{BHD}=\widehat{KBH}\)

Ta lại có:\(\widehat{AHM}=90^0-\widehat{KHD}=\widehat{BKH}\)

Xét \(\Delta AHM\&\Delta BKH\)có:

\(\hept{\begin{cases}\widehat{HAM}=\widehat{KBH}\\\widehat{AHM}=\widehat{BKH}\end{cases}}\)

\(\Rightarrow\Delta HAM\)đồng dạng với \(\Delta BKH\left(g.g\right)\)(mk ko bt kí hiệu đồng dạng trong olm)

\(\Rightarrow\frac{AH}{BK}=\frac{HM}{HK}\)

\(CMTT:\Rightarrow\frac{AH}{KC}=\frac{HN}{HK}\)

Mà BK=KC\(\Rightarrow\frac{HM}{HK}=\frac{HN}{HK}\Rightarrow HM=HN\)

Suy ra HK là đường trung tuyến của tam giác NMK,mà HK cũng là đường cao của tam giác NMK

Suy ra tam giác NMK cân tại K(đpcm)

Khách vãng lai đã xóa
Thanhf
Xem chi tiết
tanconcodon
4 tháng 9 2017 lúc 8:00

b1:

Bạn cũng có thể gộp chung thế này: 
MI^2 + ME^2 + MK^2 = MI^2 + Me^2 + AE^2 = MI^2 + MA^2 >= 
M'H^2 + M'A^2 = [(M'H + M'A)^2 + (M'H - M'H)^2]/2 = 
AH^2/2 + (M'H - M'A)^2/2 
=> MI^2 + Me^2 + MK^2 đạt min. bằng AH^2/2 khi M'A = M'H và 
sảy ra dấu "=" thay vì dấu ">=", tức khi M nằm trên AH. 
=> M trùng với M' và MA = M'A = M'H = MH 
=> M nằm ở trung điểm AH

Ayakashi
Xem chi tiết
 (옹 성우)
Xem chi tiết
Huyền Nguyễn
Xem chi tiết
Huyền Nguyễn
25 tháng 7 2023 lúc 15:11

giúp e vs

 

Huyền Nguyễn
Xem chi tiết
Huyền Nguyễn
24 tháng 7 2023 lúc 11:56

giúp mik vs ;-;