Tam giác ABC vuông cân tại A. M∈AC,N∈BC,K∈ABsao cho tam giác KMN vuông cân tại K
Xác định M,N,K để diện tích tam giác KMN nhỏ nhất
Tam giác ABC vuông cân tại A. \(M\in AC,N\in BC,K\in AB\)sao cho tam giác KMN vuông cân tại K
Xác định M,N,K để diện tích tam giác KMN nhỏ nhất
cho tam giác ABC vuông tại A, trên AB,BC,BA lần lượt lấy K,M,N sao cho tam giác KMN vuông cân tại K, kẻ MH vuông góc với AB, tìm min của diện tích tam giác KMN
cho tam giác ABC vuông cân tại A tren cac canh AB,BC,CA lan luot lay cac diem K,M,N sao cho tam giac KMN vuong can tai K . tim GTNN cua tam giac KMN
Cho tam giác nhọc ABC, H là trực tâm. Gọi K là trung điểm của cạnh BC. Đường thẳng qua H vuông góc với HK cắt AC, AB lần lượt tại M và N . Chứng min tam giác KMN cân
Gọi AD,BE,CF lần lượt là đường cao cảu tam giác ABC,mà H là trực tâm của tam giác ABC nên AD,BE,CF đồng quy tại H
Ta có:\(\widehat{HAM}=90^0-\widehat{AHE}=90^0-\widehat{BHD}=\widehat{KBH}\)
Ta lại có:\(\widehat{AHM}=90^0-\widehat{KHD}=\widehat{BKH}\)
Xét \(\Delta AHM\&\Delta BKH\)có:
\(\hept{\begin{cases}\widehat{HAM}=\widehat{KBH}\\\widehat{AHM}=\widehat{BKH}\end{cases}}\)
\(\Rightarrow\Delta HAM\)đồng dạng với \(\Delta BKH\left(g.g\right)\)(mk ko bt kí hiệu đồng dạng trong olm)
\(\Rightarrow\frac{AH}{BK}=\frac{HM}{HK}\)
\(CMTT:\Rightarrow\frac{AH}{KC}=\frac{HN}{HK}\)
Mà BK=KC\(\Rightarrow\frac{HM}{HK}=\frac{HN}{HK}\Rightarrow HM=HN\)
Suy ra HK là đường trung tuyến của tam giác NMK,mà HK cũng là đường cao của tam giác NMK
Suy ra tam giác NMK cân tại K(đpcm)
Giúp em với
B1:Tam giác ABC vuông tại A. điểm M bất kì trong tam giác. Từ M kẻ MI;ME;MK lần lượt vuông góc với BC:AC;AB.Tìm vị trí của M để MI^2+ME^2+MK^2 min
B2:Cho tam giác ABC vuong tạo A.Trên AB,BC,CA lấy K;M;N sao cho tam giác MNK vuông cân tại K. kẻ MH vuông góc với AB=H.
1,CMR tam giác AMK=tam giác AKN
2,Xác định K;M;N để diện tích tam giác K;M;N nhỏ nhất
b1:
Bạn cũng có thể gộp chung thế này:
MI^2 + ME^2 + MK^2 = MI^2 + Me^2 + AE^2 = MI^2 + MA^2 >=
M'H^2 + M'A^2 = [(M'H + M'A)^2 + (M'H - M'H)^2]/2 =
AH^2/2 + (M'H - M'A)^2/2
=> MI^2 + Me^2 + MK^2 đạt min. bằng AH^2/2 khi M'A = M'H và
sảy ra dấu "=" thay vì dấu ">=", tức khi M nằm trên AH.
=> M trùng với M' và MA = M'A = M'H = MH
=> M nằm ở trung điểm AH
Cho tam giác ABC vuông cân tại A có AB=10cm. Trên các cạnh AB, BC, CA lần lượt lấy các điểm K, L, M sao cho tam giác KLM vuông cân tại K. Xác định vị trí của K, L, M để diện tích tam giác KLM đạt giá trị nhỏ nhất.
help me ! ai giải được tích đúng cho
Cho tam giác ABC vuông cân tại A. Trên AB,BC,CA lấy K,L,M sao cho tam giác KLM vuông cân tại K.Xác định vị trí của K,L,M để diện tích tam giác KLM đạt GTNN
cho tam giác abc vuông tại a đường cao ah, trọng tâm G. Kẻ GK vuông góc Bc tại K. M, N lần lượt là trọng tâm tam giác HAC, HAB. Chứng ming rằng tam giác KMN vuông
cho tam giác abc vuông tại a đường cao ah, trọng tâm G. Kẻ GK vuông góc Bc tại K. M, N lần lượt là trọng tâm tam giác HAC, HAB. Chứng ming rằng tam giác KMN vuông