1.2.3+3.4.5+5.6.7+.........+99.100.101
Tính tổng E=1.2.3+3.4.5+5.6.7+...+99.100.101
=> 4E = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + .... + 99.100.101.4
=> 4E = 1.2.3.( 4 - 0 ) + 2.3.4.( 5 - 1 ) + 3.4.5.( 6 - 2 ) + .... + 99.100.101.( 102 - 98 )
=> 4E = 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ... + 99.100.101.102 - 98.99.100.101
=> 4E = ( 1.2.3.4 - 1.2.3.4 ) + ( 2.3.4.5 - 2.3.4.5 ) + + ... + ( 98.99.100.101 - 98.99.100.101 ) + 99.100.101.102
=> 4E = 99.100.101.102
=> E = ( 99.100.101.102 ) : 4
Tính giá trị biểu thức A = 1.2.3 + 3.4.5 + 5.6.7 + … + 99.100.101.
B=1.3+3.5+5.7+...+97.98
C=1.2.3+2.3.4+3.4.5+4.5.6+5.6.7+7.8.9+8.9.10
D=1.2.3+2.3.4+...+99.100.101
A=1.2.3+3.4.5+5.6.7+...+99.100.101
B=1.2^2+2.3^2+3.4^2+4.5^2+...+99.101^2
Ta có: A = 1.2.3+3.4.5+5.6.7+...+99.100.101
A = 1.3 (5-3) + 3.5 (7-3) + 5.7 (9-3) + ............ + 99.101 (103 - 3)
A = (1.3.5 + 3.5.7 + 5.7.9 + .......... + 99.101.103) - (1.3.3 + 3.5.3 + ....... + 99.101.3)
A = (15+99.101.103.105) : 8 - 3.(1.3 + 3.5 +5.7 + ...... + 99.101)
A = 13517400 - 3.171650
A = 13002450
A=1.2.3+3.4.5+5.6.7+...+99.100.101
B=1.2^2+2.3^2+3.4^2+4.5^2+...+99.101^2
1.2.3.4+2.3.4.5+3.4.5.6+...+97.98.99.100
4S=(1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100). 4
4S=1.2.3(4-0)+2.3.4(5-1)+3.4.5(6-2)+4.5.6(7-3)+...+98.99.100(101-97)
4S=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+4.5.6.7-3.4.5.6+...98.99.100.101-97.98.99.100
4S=1.2.3.4-1.2.3.4+2.3.4.5-2.3.4.5+3.4.5.6-3.4.5.6+...+97.98.99.100-97.98.99.100+98+99.100+101
4S=98.99.100.101
Vậy S = 98.99.100.101/4 = 24497550
A=1.2.3+3.4.5+5.6.7+,,,+99.100.101
các bạn giúp mình với ai trả lời đúng nhất mình sẽ tích cho
\(A=1.2.3+3.4.5+5.6.7+...+99.100.+101\)
\(A=1.3\left(5-3\right)+3.5\left(7-3\right)+5.7\left(9-3\right)+...+99.100\left(103-3\right)\)
\(=\left(1.3.5+3.5.7+5.7.9+99.101.103\right)-\left(1.3.3+3.5.3+99.101.3\right)\)
\(=\left(15+99.101.103.105\right):8-3.\left(1.3+3.5+5.7+99.101\right)\)
\(=13517400-3.171650\)
\(=13002450\)
cau còn lại bạn trả lời được mình sẽ tích cho bạn luôn
\(C=\frac{4}{1.2.3}+\frac{8}{3.4.5}+\frac{12}{5.6.7}+...+\frac{200}{99.100.101}\)
Giúp mik nha ai lm đúng mik tick cho
Rút gọn mỗi số hãng của số ta được :
\(C=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}=\frac{100}{101}\)
Vậy C = 100/101
\(C=\frac{4}{1.2.3}+\frac{8}{3.4.5}+\frac{12}{5.6.7}+...+\frac{200}{99.100.101}\)
\(=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}\)
\(=\frac{101}{101}-\frac{1}{101}\)
\(=\frac{100}{101}\)
\(C=\frac{4}{1.2.3}+\frac{8}{3.4.5}+\frac{12}{5.6.7}+.....+\frac{200}{99.100.101}\)
\(C=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{99.101}\)
\(C=\frac{1}{2}\left(2-\frac{2}{3}+\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+.....+\frac{2}{99}-\frac{2}{101}\right)\)
\(C=\frac{1}{2}\left(2-\frac{2}{101}\right)\)
\(C=\frac{1}{2}\left(\frac{202}{101}-\frac{2}{101}\right)\)
\(C=\frac{1}{2}.\frac{200}{101}\)
\(C=\frac{200}{202}=\frac{100}{101}\)
1.2.3+3.4.5+...+99.100.101
Đặt S= 1.2 + 2.3 + 3.4 + ...+ 99.100
3S = 1.2.3+2.3.3+3.4.3+...+98.99.3+99.100.3
3S= 1.2.3+2.3(4-1)+3.4(5-2)+...+98.99(100-97)+99.100(101-98)
3S= 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...-97.98.99+99.100.101-98.99.100
3S = 99.100.101 3S = 3.33.100.101
S=33.100.101= 333300
Đặt S = 1,2 + 2,3 + 3,4 + ... + 99.100
3S = 1.2.3 + 2.3.3 + 3.4.3 + ... + 98.99.3 + 99.100.3
3S = 1.2.3 + 2.3 ( 4 - 1 ) + 3.4 ( 5 - 2 ) + ... + 98.99 ( 100 - 97 ) + 99.100 ( 101 - 98 )
3S = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... - 97.98.99 + 99.100.101 - 98.99.100
S = 33.100.101 = 333300
Vậy S bằng 333300
Đáp số : S : 333300
Đặt S=1.2.3+2.3.4+....+99.100.101
3S=1.2.3+2.3.3+3.4.3+....+98.99.3+100.101.3
3S=1.2.3+2.3(4-1)+3.4(5-2)+.....+98.99+99.100(101-98)
3S=1.2.3+2.3.4-1.2.3+3.4.5+3.4.5-2.3.4+......+97.98.99+99.100.101-98.99.100
3S=33.100.101=333300
Vậy S=333300
1.2.3+2.3.4+3.4.5+..+99.100.101
Đặt \(A=1.2.3+2.3.4+3.4.5+...+99.100.101\)
\(\Rightarrow4A=1.2.3.4+2.3.4.4+...+99.100.101.4\)
\(=1.2.3\left(4-0\right)+2.3.4\left(5-1\right)+...+99.100.101\left(102-98\right)\)
\(=\left(1.2.3.4+2.3.4.5+...+99.100+101.102\right)-\left(0.1.2.3+1.2.3.4+...+98.99.100.101\right)\)
\(=99.100.101.102-0.1.2.3\)
\(=101989800\)
\(\Rightarrow A=101989800:4=25497450\)
Vậy \(A=25497450.\)