99 + 1 - 1
cmr neu 1/a+1/b+1/c =1/a+b+c thi 1/a^99+1/b^99+1/c^99=1/a^99+b^99+c^99
(1+97)*(1+97/2)*(1+97/3)*(1+97/4)... ... ...(1+97/99)
(1+99)*(1+99/2)*(1+99/3)*(1+99/4)... ... ...(1+99/97)
\(\frac{x-99-1}{99}-\frac{x-99-1}{98}-\frac{x-99-1}{97}-\frac{x-99-1}{96}-\frac{x-99-1}{95}-\frac{x-99-1}{94}\)=0
Ta có :
\(\frac{x-99-1}{99}-\frac{x-99-1}{98}-\frac{x-99-1}{97}-\frac{x-99-1}{96}-\frac{x-99-1}{95}-\frac{x-99-1}{94}=0\)
\(\Leftrightarrow\)\(\frac{x-100}{99}-\frac{x-100}{98}-\frac{x-100}{97}-\frac{x-100}{96}-\frac{x-100}{95}-\frac{x-100}{94}=0\)
\(\Leftrightarrow\)\(\left(x-100\right)\left(\frac{1}{99}-\frac{1}{98}-\frac{1}{97}-\frac{1}{96}-\frac{1}{95}-\frac{1}{94}\right)=0\)
Vì \(\frac{1}{99}-\frac{1}{98}-\frac{1}{97}-\frac{1}{96}-\frac{1}{95}-\frac{1}{94}\ne0\)
Nên \(x-100=0\)
\(\Rightarrow\)\(x=100\)
Vậy \(x=100\)
Bài làm mang tính chất tham khảo vì em mới lớp 7 ~
1+1+1+1+1+2+2+2+2+2+......+99+99+99+99+99+100+100+100+100+100=?
tu 1 den 100 co 100 so
nen tong cac so do la : ( 100 + 1 ) x 100 : 2 = 5050
nhin tong tren , ta thay moi so duoc lap lai 4 lan nen tong do la : 5050 x 4 = 20200
dap so : 20200
Tính có bao nhiêu số hạng: (100-1):1+1 x 5= 500(số)
Tính tổng của dãy số trên: (100+10) x 500 :2 x 5 =137500
tổng = 5050 vì mỗi số xh 4 lần nên tg = 5050*4=20200
tinh tong gia tri bieu thuc :
a)A=1+1/3+1/5+...+1/97+1/99/1/1*99+1/3*97+1/5*95+...+1/97*3+1/99*1
b)B=1/2+1/3+1/4+...+1/100/99/1+98/2+97/3+...+1/99
Cho S = 9999!+( 9999+1)!/1!+( 9999+2)!/2!+…+( 9999+1000)!/1000!
Viết M = (99^99+1).S dưới dạng thương của hai giai thừa
1+1+1+1+2+2+2+2+3+3+3+3+...+99+99+99+99+100+100+100+100=?
=========================
==========================ko bt
( ;-; )
E=(1+1/3+1/5+........+1/97+1/99)/(1/1*99+1/3*97+1/5*95+.....+1/97*3+1/99*1)
\(H=\frac{\left(1+97\right)\left(1+\frac{97}{2}\right)\left(1+\frac{97}{3}\right)\left(1+\frac{97}{4}\right)+...+\left(1+\frac{97}{99}\right)}{\left(1+99\right)\left(1+\frac{99}{2}\right)\left(1+\frac{99}{3}\right)\left(1+\frac{99}{4}\right)+...+\left(1+\frac{99}{97}\right)}\)
\(\frac{99^1}{1}+\frac{99^2}{1}+\frac{99^3}{1}+...+\frac{99^{100}}{1}\)so sánh với 1001 vạn