5. Find the natural number x, given that:
Câu 1: Given that is divisible by 9. What is the value of ?
Câu 2: How many elements of the set A are divisible by 9?
Câu 3:A is a set of multiples of 12 less than 12. How many elements does the set A have?
Câu 4:Find the remainder when is divided by 3.
Câu 5:Given that 511 is the sum of two prime numbers and , . What is the value of ?
Câu 6:Given that . Find the value of .
Câu 7:Given that . How many divisors does the number A have?
Câu 8:Find the natural number so that the product of and 5 is a prime number.
Câu 9:
Given that . How many divisors does the number A have?
Câu 10:
Given that . How many divisors the number A have?
Câu 1: Cho chia hết cho 9. giá trị là gì?
Câu 2: Có bao nhiêu phần tử của tập A chia hết cho 9?
Câu 3: A là một tập hợp các bội số của 12 ít hơn 12. Làm thế nào nhiều yếu tố không tập A có?
Câu 4: Tìm dư khi chia cho 3. Câu 5: Cho rằng 511 là tổng của hai số nguyên tố và,. giá trị là gì?
Câu 6: Cho rằng. Tìm giá trị của.
Câu 7: Cho rằng. không số A có bao nhiêu ước?
Câu 8: Tìm số tự nhiên vì thế sản phẩm và 5 là số nguyên tố.
Câu 9: Cho rằng. không số A có bao nhiêu ước?
Câu 10: Cho rằng. Một số có bao nhiêu ước?
Câu 1: Given that is divisible by 9. What is the value of ?
Câu 2: How many elements of the set A are divisible by 9?
Câu 3:A is a set of multiples of 12 less than 12. How many elements does the set A have?
Câu 4:Find the remainder when is divided by 3.
Câu 5:Given that 511 is the sum of two prime numbers and , . What is the value of ?
Câu 6:Given that . Find the value of .
Câu 7:Given that . How many divisors does the number A have?
Câu 8:Find the natural number so that the product of and 5 is a prime number.
Câu 9:
Given that . How many divisors does the number A have?
Câu 10:
Given that . How many divisors the number A have?
Câu 1: Given that is divisible by 9. What is the value of ?
Câu 2: How many elements of the set A are divisible by 9?
Câu 3:A is a set of multiples of 12 less than 12. How many elements does the set A have?
Câu 4:Find the remainder when is divided by 3.
Câu 5:Given that 511 is the sum of two prime numbers and , . What is the value of ?
Câu 6:Given that . Find the value of .
Câu 7:Given that . How many divisors does the number A have?
Câu 8:Find the natural number so that the product of and 5 is a prime number.
Câu 9:
Given that . How many divisors does the number A have?
Câu 10:
Given that . How many divisors the number A have?
!!!!!!!!!!!
Exer 1: Given two natural numbers whose sum are 78293. The bigger number where 5 is the units digit and 2 is hundred digit. If we clean these digits then we obtain a number which equals the smaller number. Find two natural numbers.
Exer 2: Prove that: If x, y \(\in\) N and x + 2y divisible by 5 then 3x - 4y divisibles by 5.
Exer 3: Given that 2x + 5y \(⋮\) 7. Prove that 4x + 3y \(⋮\) 7.
Exer 1:
Solution:
Suppose that, the unknown number is: \(\overline{x215}\) (where x \(\in\) N).
When we clean three digits then the smaller number is \(\overline{x}\).
We have: \(\overline{x215}\) + \(\overline{x}\) = 78293
\(\Rightarrow\) 1000. \(\overline{x}\) + 215 + \(\overline{x}\) = 78293
1001. \(\overline{x}\) = 78078
x = 78
Thus, we found two natural number: 78215 and 78.
Exer 2:
Solution:
We have: x + 2y \(⋮\) 5
\(\Rightarrow\) 2x + 4y \(⋮\) 5
(2x + 4y) + (3x - 4y) = 5x \(⋮\) 5
\(\Rightarrow\) 2x + 4y \(⋮\) 5
Deduce 3x - 4y \(⋮\) 5.
Exer 3:
Solution:
We have: 2x + 5y \(⋮\) 7
4x + 10y \(⋮\) 7
(4x + 10y) - (4x + 3y) = 7y \(⋮\) 7
\(\Rightarrow\) 4x + 10y \(⋮\) 7
Deduce 4x + 3y \(⋮\) 7.
Find the natural number x , given 9x - 9 = 108
Make
9x - 9 = 108
9 . ( x - 1 ) = 108
x - 1 = 108 : 9
x - 1 = 12
x = 12 + 1
x = 13
So x = 13
# Learn well #
9x-9=108
9.(x-1)=108
x-1=108:9
x-1=12
x=12+1
x=13
vậy x=13
\(9x-9=108\)
\(9.\left(x-1\right)=108\)
\(x-1=12\)
\(x=13\)
Given that A=5^2+1 0n+601 where n is a natural number . Find the minmum sum of the digits of A.
TOÁN SONG NGỮ NHA! GIÚP MÌNH ĐI
THANKS
Find the natural number so that the product of and 5 is a prime number.
Tìm số tự nhiên vì thế sản phẩm và 5 là số nguyên tố.
Câu 1:
A is a set of multiples of 12 less than 12. How many elements does the set A have?
Answer: The set A has element(s)
Câu 2:
Find the remainder when is divided by 9.
Answer: The remainder is
Câu 3:
Find the remainder of when it is divided by 3.
Answer: The remainder is
Câu 4:
A is the set of factor of 12 more than 6. How many elements does the set A have?
Answer: The set A has element(s)
Câu 5:
Find the natural number so that the product of and 5 is a prime number.
Answer:
Câu 6:
Given that . How many divisors does the number A have?
Answer: The number A has divisors.
Câu 7:
Given that . How many divisors does the number A have?
Answer: The number A has divisors.
Câu 8:
How many prime numbers less than 10 are there?
Answer: There are numbers.
Câu 9:
Find the greatest 2-digit number that has 12 divisors.
Answer: It is
Câu 10:
Among all natural number pairs satisfy , one pair has the greatest product. What is this product?
Answer: The greatest product is
Theo tớ thì cậu nên đăng câu này ở mục hỏi toán bằng tiếng anh !
Exer 1: There is a division with the quotient is 6 and the remainder is 3. The sum of dividend, divisor and remainder are 195. Find the dividend are divisor.
Exer 2: Prove that: Amoney three consecutive natural numbers, there is one only one the number which divisibles by 3.
Exer 3: Given natural number, n = \(\overline{1ab1}\). Let m be the natural number which is written the opposite respectively of n. Prove that the different of n and m divisibles by 90.
Exer 1:
Trả lời:
The sum of dividend and divisor are:
195 - 3 = 192
Because the quotient is 6.
The divisor is:
(192-3) : (6+1) = 27
The dividend is:
192 - 27 = 165
Exer 2:
Trả lời:
Let three unknow numbers be: n, n + 1, n + 2.
Because n has three forms: 3k, 3k + 1, 3k + 2.
+) If n
Xin lỗi, mình vẫn chưa viết xong, rồi mình viết tiếp đây:
+) If n = 3k then there is only n divisibles by 3.
+) If n = 3k + 1 then there is only n + 2 divisibles by 3.
+) If n = 3k + 2 then there is only n + 1 divisibles by 3.
Thus, amoney three consecutive natural numbers, there is one only one the number which divisibles by 3.
Exer 3:
Trả lời:
When we written the opposite respectively of n, we obtain \(\overline{1ba1}\).
We have:
\(\overline{1ab1}\) + \(\overline{1ba1}\) = (1000 + 100a + 10b + 1) - (1000 + 100b + 10a + 1)
= 90a - 90b
= 90(a - b)\(⋮\) 90
Thus, the difference of n and m which divisibles by 90.
For fraction 14/20. Find the natural number known as the denominator in the denominator and keep the atomic number, which is given a new fraction of 1/4.
Đối với phân đoạn 14/20. Tìm số tự nhiên được gọi là mẫu số trong mẫu số và giữ số nguyên tử, được cho một phần mới của 1/4.
Find a natural number so that the divisor is divisible by 9, then the number is 7 and the balance is the largest.
That number is ...
Tìm 1 số tự nhiên sao cho khi chia số đó cho 9 thì được thương là 7 và có số dư lớn nhất.
Giải:
Vì số chia là 9 nên số dư lớn nhất là: 8
Số đó là: 9x7+8 = 71
Đáp số : 71