cho A=1.99 + 2.98 + 3.97 + ..... + 99.1
và B= 1.101+2.102+3.103+.....+9.199
tính A+B
cho A = 1.99 + 2.98 + 3.97 + ... + 99.1 và B = 1.101 + 2.102 + 3.103 + ... + 99.199
Tính A+B
A+B = (1.99+2.98+3.97+...+99.1)+(1.101+2.102+3.103+...+99.199)
A+B = (1.99+1.101)+(2.98+2.102)+(3.97+3.103)+...+(99.1+99.199)
A+B = 1(99+101) + 2(98+102) + 3(97.103)+...+99(1+199)
A+B = 1.200 + 2.200 + 3.200 +...+ 99.200
A+B = 200.(1+2+3+...+200)
A+B = 200.4950
A+B = 990000
Cho A= 1.99+2.98+3.97+...+99.1
và B= 1.101+2.102+3.103+...+99.199
Tính A+B
A + B = ( 1 . 99 + 2 . 98 + 3 . 97 + ... + 99 . 1 ) + ( 1 . 101 + 2 . 102 + 3 . 103 + ... + 99 . 199 )
A + B = 99 . ( 1 + 199 ) + 98 . ( 2 + 198 ) + 97 . ( 3 + 197 ) + ... + 2 . ( 102 + 98 ) + 1 . ( 99 + 101 )
A + B = 99 . 200 + 98 . 200 + 97 . 200 + ... + 2 . 200 + 1 . 200
A + B = ( 99 + 98 + 97 + ... + 2 + 1 ) . 200
A + B = 4950 . 200
A + B = 990000
Tính A+B
A= 1.99+2.98+3.97+.............+99.1
B=1.101+2.102+3.103+............+99.199
so sánh P và Q
P=2016/2017+2017/2018
Q= 2016+2017+2018/2017+2018+2019
A+B=(1.99+2.98+...+99.1)+(1.101+2.102+...+99.199)
=(1.99+1.101)+(2.98+2.102)+...+(99.1+99.199)
=1.(99+101)+2.(98+102)+...+99(1+199)
=200+2.200+...+99.200
=200.(1+2+3+4+...+99)
=200.4950
=.....
So sánh
a) M=1/1^2+1/2^2+1/3^2+...................+1/50^2 và N=2
b) P= 2015^2015+1/2015^2016+1 và Q=2015^2016-2/2015^2017-2
Tính A+B biết
A=1.99+2.98+3.97+..............+99.1
B=1.101+2.102+3.103+.....................+99.199
a) Cho a= 1.9+2.98+3.97+...........99.1
Cho B=1.101+2.102+3.103+.............999.199
Tính A+ B
b) Cho a=1+2017+20172+20173+...........+20172017
Cho b= 20172018-1
So sánh A va B
Chứng minh rằng 12n+1 là phân số tối giản
30n+2
Giúp mình với Thanks!^^
tính 1.99+2.98+3.97+...+98.2+99.1
1.99+2.98+3.97+...+98.2+99.1=1.99+2.(99-1)+3.(99-2)+...+98.(99-97)+99.(99-98)
=1.99+2.99-1.2+3.99-2.3+...+98.99-97.98+99.99-98.99
=(1.99+2.99+3.99+...+98.99+99.99)-(1.2+2.3+3.4+...+98.99)
=99.(1+2+...+99)-(1.2+2.3+...+98.99)=99.4950-(1.2+2.3+...+98.99)=490050-(1.2+2.3+...+98.99)
đặt A=1.2+2.3+...+98.99
=>3A=1.2.3+2.3.3+...+98.99.3
=1.2.3+2.3.(4-1)+...+98.99.(100-97)
=1.2.3-1.2.3+2.3.4-2.3.4+...+97.98.99-97.98.99+98.99.100=98.99.100
=>A=98.99.100:3=323400
=>1.99+2.98+3.97+...+98.2+99.1=490050-323400=166650
1.99+2.98+3.97+4.96+...+98.2+99.1
=1.99+2.(99-1)+3.(99-2)+...+98.(99-97)+99.(99-98)
=1.99+2.99-1.2+3.99-2.3+...+98.99-97.98+99.99-98.99
=(1.99+2.99+3.99+4.99+...+98.99+99.99)-(1.2+2.3+3.4+...+97.98+98.99)
=(1+2+3+4+...+98+99).99-(98.99.100)/3
={(99-1+1)/2}.100.99-(98.99.100)/3
=49,5.100.99-(98.99.100)/3
=4950.99-(98.99.100)/3
=4950.3.33-98.100.33
B=14850.33-9800.33
B=(14850-9800).33
B=5050.33
B=166650
Tính:
A =1^2+2^2+3^2+...+97^2+98^2
B =1.99+2.98+3.97+...+98.2+99.1
=1.99+2.(99-1)+3.(99-2)+...+98.(99-97)+99(99-98)
=99.(1+2+3+4+...+98+99)-(2+2.3+3.4+...+97.98+98.99)
=99.(1+99).99/2-98.99.100/3
=99.50.99-98.33.100
=490050-323400
=166650
Thực hiện phép tính:
A=1.99+2.98+3.97+...+98.2+99.1
B=1.2.3+2.3.4+3.4.5+...+17.28.19
C=1.4+2.5+3.6+...+100.103
D=1.3+2.4+3.5+...+97.99+98.100
Tính tổng : S=1.99+2.98+3.97+...........+98.2+99.1