Tìm số tự nhiên có năm chữ số,biết rằng số đó bằng 45 làn tích các chữ số của nó.
Tìm số tự nhiên có năm chữ số, biết rằng số đó bằng 45 lần tích các chữ số của nó
tìm số tự nhiên có năm chữ số biết rằng số đó bằng 45 lần tích các chư số của nó
Tìm số tự nhiên có 5 chữ số, biết rằng số đó bằng 45 lần tích các chữ số của nó
A. Hoảng hốt vì lo lắng cho mẹ
B. Hoảng hốt vì mẹ đã già mà mình còn thơ dại
C. Hoảng hốt vì mẹ đã già
D. Hoảng hốt vì thời gian trôi qua nhanh
Tìm số tự nhiên có 5 chữ số biết rằng số đó bằng 45 lền tích các chữ số của nó
Tìm số tự nhiên có 5 chữ số, biết rằng số đó bằng 45 lần tích các chữ số của nó
Tìm số tự nhiên có 5 chữ số,biết rằng số đó bằng 45 lần tích các chữ số của nó
tìm số tự nhiên có 5 chữ số , biết rằng số đó bằng 45 lần tích các chữ số của nó
Gọi số cần tìm là abcde¯¯¯¯¯¯¯¯ (a khác 0)
Theo bài ra ta có: abcde¯¯¯¯¯¯¯¯=45abcde
Ta thấy: 45=5.9 hay 45⋮5 và 9
(5;9)=1
abcde¯¯¯¯¯¯¯¯ và 45abcde đều phải chia hết cho cả 5 và 9
Để abcde¯¯¯¯¯¯¯¯⋮5 thì e=0 hoặc e=5
Với e=0 ta có:
abcd0¯¯¯¯¯¯¯¯=45abcd abcd0¯¯¯¯¯¯¯¯=0 (không thỏa mãn)
e=5
Thay e=5 ta có:
abcd5¯¯¯¯¯¯¯¯=45.5abcd abcd5¯¯¯¯¯¯¯¯=225abcd
Ta thấy: 225⋮25
225abcd⋮25
abcd5¯¯¯¯¯¯¯¯⋮25
d5¯¯¯¯⋮25
d5¯¯¯¯∈ 25;75
Với d5¯¯¯¯=25 ta có:
abc25¯¯¯¯¯¯¯¯=450abc
Ta thấy: 450abc là số chẵn, abc25¯¯¯¯¯¯¯¯ là số lẻ nên d5¯¯¯¯=25 không thỏa mãn. d5¯¯¯¯=75
Với d5¯¯¯¯=75 ta có:
abc75¯¯¯¯¯¯¯¯=1575abc
abc75¯¯¯¯¯¯¯¯⋮9 (a+b+c+7+5)⋮9
(a+b+c+12)⋮9 hay (a+b+c) chia 9 dư 6 (1)
Mà a;b;c là các chữ số nên a+b+c 9+9+9 hay a+b+c 27 (2)
Từ (1) và (2) (a+b+c)∈ 6;15;24
Để 1575abc là số lẻ thì a;b;c cũng phải là các số lẻ a+b+c cũng phải là số lẻ.
Do đó: a+b+c=15
Phân tích 15 thành tổng các số có 1 chữ số ta được
15=1+5+9=1+9+5=5+1+9=5+9+1=9+1+5=9+5+1
=3+5+7=3+7+5=5+3+7=5+7+3=7+3+5=7+5+3
=1+7+7=7+1+7=7+7+1
Thử a;b;c với các trường hợp trên ta tìm ra được a=7;b=7;c=1
Vậy số cần tìm là 77175
HƠI DÀI DÒNG MỘT TÍ NHÉ
THÔNG CẢM
-----------------------------------------------------------------------------HẾT-------------------------------------------------------------------------------------------------
ọi số cần tìm là abcde¯¯¯¯¯¯¯¯ (a khác 0)
Theo bài ra ta có: abcde¯¯¯¯¯¯¯¯=45abcde
Ta thấy: 45=5.9 hay 45⋮5 và 9
(5;9)=1
abcde¯¯¯¯¯¯¯¯ và 45abcde đều phải chia hết cho cả 5 và 9
Để abcde¯¯¯¯¯¯¯¯⋮5 thì e=0 hoặc e=5
Với e=0 ta có:
abcd0¯¯¯¯¯¯¯¯=45abcd abcd0¯¯¯¯¯¯¯¯=0 (không thỏa mãn)
e=5
Thay e=5 ta có:
abcd5¯¯¯¯¯¯¯¯=45.5abcd abcd5¯¯¯¯¯¯¯¯=225abcd
Ta thấy: 225⋮25
225abcd⋮25
abcd5¯¯¯¯¯¯¯¯⋮25
d5¯¯¯¯⋮25
d5¯¯¯¯∈ 25;75
Với d5¯¯¯¯=25 ta có:
abc25¯¯¯¯¯¯¯¯=450abc
Ta thấy: 450abc là số chẵn, abc25¯¯¯¯¯¯¯¯ là số lẻ nên d5¯¯¯¯=25 không thỏa mãn. d5¯¯¯¯=75
Với d5¯¯¯¯=75 ta có:
abc75¯¯¯¯¯¯¯¯=1575abc
abc75¯¯¯¯¯¯¯¯⋮9 (a+b+c+7+5)⋮9
(a+b+c+12)⋮9 hay (a+b+c) chia 9 dư 6 (1)
Mà a;b;c là các chữ số nên a+b+c 9+9+9 hay a+b+c 27 (2)
Từ (1) và (2) (a+b+c)∈ 6;15;24
Để 1575abc là số lẻ thì a;b;c cũng phải là các số lẻ a+b+c cũng phải là số lẻ.
Do đó: a+b+c=15
Phân tích 15 thành tổng các số có 1 chữ số ta được
15=1+5+9=1+9+5=5+1+9=5+9+1=9+1+5=9+5+1
=3+5+7=3+7+5=5+3+7=5+7+3=7+3+5=7+5+3
=1+7+7=7+1+7=7+7+1
Thử a;b;c với các trường hợp trên ta tìm ra được a=7;b=7;c=1
Vậy số cần tìm là 77175
Tìm số tự nhiên có 5 chữ số,biết rằng số đó bằng 45 lần tích các chữ số của nó
Tìm số tự nhiên có 5 chữ số biết rằng số đó bằng 45 lần tích các chữ số của nó
Gọi số cần tìm là abcde¯¯¯¯¯¯¯¯ (a khác 0)
Theo bài ra ta có: abcde¯¯¯¯¯¯¯¯=45abcde
Ta thấy: 45=5.9 hay 45⋮5 và 9
(5;9)=1
abcde¯¯¯¯¯¯¯¯ và 45abcde đều phải chia hết cho cả 5 và 9
Để abcde¯¯¯¯¯¯¯¯⋮5 thì e=0 hoặc e=5
Với e=0 ta có:
abcd0¯¯¯¯¯¯¯¯=45abcd abcd0¯¯¯¯¯¯¯¯=0 (không thỏa mãn)
e=5
Thay e=5 ta có:
abcd5¯¯¯¯¯¯¯¯=45.5abcd abcd5¯¯¯¯¯¯¯¯=225abcd
Ta thấy: 225⋮25
225abcd⋮25
abcd5¯¯¯¯¯¯¯¯⋮25
d5¯¯¯¯⋮25
d5¯¯¯¯∈ 25;75
Với d5¯¯¯¯=25 ta có:
abc25¯¯¯¯¯¯¯¯=450abc
Ta thấy: 450abc là số chẵn, abc25¯¯¯¯¯¯¯¯ là số lẻ nên d5¯¯¯¯=25 không thỏa mãn. d5¯¯¯¯=75
Với d5¯¯¯¯=75 ta có:
abc75¯¯¯¯¯¯¯¯=1575abc
abc75¯¯¯¯¯¯¯¯⋮9 (a+b+c+7+5)⋮9
(a+b+c+12)⋮9 hay (a+b+c) chia 9 dư 6 (1)
Mà a;b;c là các chữ số nên a+b+c 9+9+9 hay a+b+c 27 (2)
Từ (1) và (2) (a+b+c)∈ 6;15;24
Để 1575abc là số lẻ thì a;b;c cũng phải là các số lẻ a+b+c cũng phải là số lẻ.
Do đó: a+b+c=15
Phân tích 15 thành tổng các số có 1 chữ số ta được
15=1+5+9=1+9+5=5+1+9=5+9+1=9+1+5=9+5+1
=3+5+7=3+7+5=5+3+7=5+7+3=7+3+5=7+5+3
=1+7+7=7+1+7=7+7+1
Thử a;b;c với các trường hợp trên ta tìm ra được a=7;b=7;c=1
Vậy số cần tìm là 77175