Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kiệt Lê
Xem chi tiết
trần bảo anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 9 2023 lúc 10:58

a: =(x+y)^3+z^3-3xy(x+y)-3xyz

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)

b: \(=\left(x+y+y-z\right)^3-3\left(x+y\right)\left(y-z\right)\left(x+y+y-z\right)+\left(z-x\right)^3\)

\(=\left(x-z\right)^3+\left(z-x\right)^3-3\left(x+y\right)\left(y-z\right)\left(x-z\right)\)

\(=-3\left(x+y\right)\left(y-z\right)\left(x-z\right)\)

c: \(=\left(x^2+x\right)^2+3\left(x^2+x\right)+2-12\)

\(=\left(x^2+x\right)^2+3\left(x^2+x\right)-10\)

=(x^2+x+5)(x^2+x-2)

=(x^2+x+5)(x+2)(x-1)

d: =b^2c+bc^2+ac^2-a^2c-a^2b-ab^2

=b^2c-b^2a+bc^2-a^2b+ac^2-a^2c

=b^2(c-a)+b(c^2-a^2)+ac(c-a)

=(c-a)(b^2+ac)+b(c-a)(c+a)

=(c-a)(b^2+ac+bc+ba)

=(c-a)[b^2+bc+ac+ab]

=(c-a)[b(b+c)+a(b+c)]

=(c-a)(b+c)(b+a)

chi nguyễn mai
Xem chi tiết
khánh huyền
Xem chi tiết
NOO PHƯỚC THỊNH
Xem chi tiết
Lê Tài Bảo Châu
31 tháng 8 2019 lúc 22:34

\(=\left(ca^3-ac^3\right)-\left(ba^3-bc^3\right)+\left(ab^3-cb^3\right)\)

\(=ac\left(a^2-c^2\right)-b\left(a^3-c^3\right)+b^3\left(a-c\right)\)

\(=ac\left(a-c\right)\left(a+c\right)-b\left(a-c\right)\left(a^2+ac+c^2\right)+b^3\left(a-c\right)\)

\(=\left(a-c\right)\left(a^2c+ac^2-a^2b-abc-c^2b+b^3\right)\)

\(=\left(a-c\right)\left[\left(a^2c-a^2b\right)+\left(ac^2-abc\right)-\left(c^2b-b^3\right)\right]\)

\(=\left(a-c\right)\left[a^2\left(c-b\right)+ac\left(c-b\right)-b\left(c^2-b^2\right)\right]\)

\(=\left(a-c\right)\left[a^2\left(c-b\right)+ac\left(c-b\right)-b\left(c-b\right)\left(c+b\right)\right]\)

\(=\left(a-c\right)\left(c-b\right)\left(a^2+ac-bc-b^2\right)\)

\(=\left(a-c\right)\left(c-b\right)\left[\left(a^2-b^2\right)+\left(ac-bc\right)\right]\)

\(=\left(a-c\right)\left(c-b\right)\left[\left(a-b\right)\left(a+b\right)+c\left(a-b\right)\right]\)

\(\left(a-c\right)\left(c-b\right)\left(a-b\right)\left(a+b+c\right)\)

Vũ Văn Bình
Xem chi tiết
Nguyễn Huy Bảo
10 tháng 8 2016 lúc 21:32

ai có thể giảng cho mình dạng toán tìm số tự nhiên thỏa mãn đièu kiện chia hết ko

hãy nêu ra cách giải cụ thể cho câu sau 3a-11 chia hết cho a+2 tìm a

Đường Quỳnh Giang
18 tháng 9 2018 lúc 23:50

\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(=\left(a+b+c\right)\left(ab+bc\right)+\left(a+b+c\right)ac-abc\)

\(=\left(ab+b^2+bc\right)\left(a+c\right)+\left(a+c\right)ac+abc-abc\)

\(=\left(a+c\right)\left(ab+b^2+bc+ac\right)\)

\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Trịnh Văn Đức
Xem chi tiết
Trịnh Văn Đức
1 tháng 1 2019 lúc 15:32

=(a+b-c)(b+c-a)(a+c-b)

trần hiếu
Xem chi tiết
Minh Triều
9 tháng 7 2015 lúc 20:49

hở mà phân tích đa thức thành nhân tử:mà

Đường Quỳnh Giang
18 tháng 9 2018 lúc 23:51

\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(=\left(a+b+c\right)\left(ab+bc\right)+\left(a+b+c\right)ac-abc\)

\(=\left(ab+b^2+bc\right)\left(a+c\right)+\left(a+c\right)ac+abc-abc\)

\(=\left(a+c\right)\left(ab+b^2+bc+ac\right)\)

\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Bùi Thị Thùy Dương
25 tháng 8 2019 lúc 10:19

Ủa đề sai hả bạn

le thi khanh huyen
Xem chi tiết