Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Huỳnh Bá Tuân
Xem chi tiết

Ta có: \(S=\frac13-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+\cdots-\frac{100}{3^{100}}\)

=>\(3A=1-\frac23+\frac{3}{3^2}-\frac{4}{3^3}+\cdots-\frac{100}{3^{99}}\)

=>\(3A+A=1-\frac23+\frac{3}{3^2}-\frac{4}{3^3}+\cdots-\frac{100}{3^{99}}+\frac13-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+\cdots-\frac{100}{3^{100}}\)

=>\(4A=1-\frac13+\frac{1}{3^2}-\frac{1}{3^3}+\cdots-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

Đặt \(B=-\frac13+\frac{1}{3^2}-\frac{1}{3^3}+\cdots-\frac{1}{3^{99}}\)

=>\(3B=-1+\frac13-\frac{1}{3^2}+\cdots-\frac{1}{3^{98}}\)

=>\(3B+B=-1+\frac13-\frac{1}{3^2}+\cdots-\frac{1}{3^{98}}-\frac13+\frac{1}{3^2}-\frac{1}{3^3}+\cdots-\frac{1}{3^{99}}=-1-\frac{1}{3^{99}}=\frac{-3^{99}-1}{3^{99}}\)

=>\(4B=\frac{-3^{99}-1}{3^{99}}\)

=>\(B=\frac{-3^{99}-1}{4\cdot3^{99}}\)

Ta có: \(4A=1-\frac13+\frac{1}{3^2}-\frac{1}{3^3}+\cdots-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(=1+\frac{-3^{99}-1}{4\cdot3^{99}}-\frac{100}{3^{100}}=1+\frac{-3^{100}-3-400}{4\cdot3^{100}}=1-\frac14-\frac{403}{4\cdot3^{100}}<\frac34\)

=>\(A<\frac{3}{16}\)

\(\frac{3}{16}<\frac{3.2}{16}=\frac15\)

nên \(A<\frac15\)

Xem chi tiết
Trịnh Thành Long
Xem chi tiết
Trịnh Hiền Trang
Xem chi tiết
vothianhlinh
Xem chi tiết
Vũ Gia Hưng
Xem chi tiết
Nguyễn Minh Kiên
17 tháng 4 2023 lúc 15:52

C gbcgghfdhsgxwvdgdrgdtdgst

Bùi Thiên Nhật Minh
Xem chi tiết
Minh Đức Nguyễn
Xem chi tiết
Phạm Nguyễn Tiến Đạt
Xem chi tiết
Vuquangminh2611
4 tháng 10 2022 lúc 20:58

ai bt tự làm

 

ĐỊT CON MẸ MÀY
15 tháng 4 2023 lúc 15:33

ngu tự chịu

Kai kai kai
14 tháng 10 2024 lúc 5:54

Triệt tiêu hết mấy số kia rồi á bạn