Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen the anh
Xem chi tiết
nguyen the anh
Xem chi tiết
Vo Thi Minh Dao
Xem chi tiết
tran nguyen bao quan
24 tháng 11 2018 lúc 17:02

Ta có \(a+b+c+d=0\Leftrightarrow a+c=-\left(b+d\right)\Leftrightarrow\left(a+c\right)^3=\left[-\left(b+d\right)\right]^3\Leftrightarrow a^3+3a^2c+3ac^2+c^3=-b^3-3b^2d-3bd^2-d^3\Leftrightarrow a^3+b^3+c^3+d^3=-3a^2c-3ac^2-3b^2d-3bd^2\Leftrightarrow a^3+b^3+c^3+d^3=-3ac\left(a+c\right)-3bd\left(b+d\right)\Leftrightarrow a^3+b^3+c^3+d^3=3ac\left(b+d\right)-3bd\left(b+d\right)\Leftrightarrow a^3+b^3+c^3+d^3=3\left(b+d\right)\left(ac-bd\right)\)Vậy \(a+b+c+d=0\) thì \(a^3+b^3+c^3+d^3=3\left(b+d\right)\left(ac-bd\right)\)

Phạm như quỳnh
Xem chi tiết
Mai Ngọc
28 tháng 12 2015 lúc 21:29

(a+b)(c+d)-(a+d)(b+c)=ac+bc+ad+bd-ab-ac-cd-bd

=bc+ad-ab-cd=a(d-b)-c(d-b)=(a-c)(d-b)

Nguyễn Minh Tuyền
Xem chi tiết
o0o I am a studious pers...
20 tháng 4 2017 lúc 15:13

\(a^2+b^2+c^2+d^2+e^2\ge ab+ac+ad+ae\left(1\right)\)

\(\Leftrightarrow a^2+b^2+c^2+d^2+e^2-a\left(b-c-d-e\right)\ge0\)

\(\Leftrightarrow\left(b^2-ab+\frac{1}{4}a^2\right)+\left(c^2-ac+\frac{1}{4}a^2\right)+\left(d^2-ad+\frac{1}{4}a^2\right)+\left(e^2-ae+\frac{1}{4}a^2\right)\ge0\)

\(\Leftrightarrow\left(b+\frac{1}{2}a\right)^2+\left(c+\frac{1}{2}a\right)^2+\left(d+\frac{1}{2}a\right)^2+\left(e+\frac{1}{2}a\right)^2\ge0\left(2\right)\)

( 2 ) đúng => ( 1 ) đúng 

trananhngoc
Xem chi tiết
trananhngoc
1 tháng 2 2019 lúc 21:43

ai nhanh minh k nha ....

Phạm như quỳnh
Xem chi tiết
nguyễn thị thùy dung
Xem chi tiết
Park Hang Seo
10 tháng 1 2019 lúc 19:18

a.(b-c)-a.(b+d)=-a.(c+d)

a.b-a.c-a.b+a.d=-a.(c+d)

(a.b-a.b)-(a.c+a.d)=-a.(c+d)

0-a.(c+d)=-a.(c+d)

-a.(c+d)=-a.(c+d)

Vậy a.(b-c)-a.(b+d)=-a.(c+d).

CR7
Xem chi tiết
Phước Nguyễn
15 tháng 11 2015 lúc 22:44

Dùng phép khai triển.