CMR
neu (13a+11b).(11a+12b)chia het cho 7 thi (13a+11b).(11a+13b)chia het cho 49
a) Cho a, b ∈ N. Chứng minh nếu (5a + 3b) và (13a + 8b) cùng chia hết cho 2018 thì a và
b cũng chia hết cho 2018.
b) Cho a, b ∈ N* thỏa mãn M = (9a + 11b).(5a + 11a) ⋮ 19. Chứng minh M ⋮ 361.
Bài 3: Cho p, q là các số nguyên tố lớn hơn 5. Chứng minh p4 + 2019.q4 ⋮ 20.
Bài 4: Tìm số tự nhiên a nhỏ nhất sao cho (a + 1) chia hết cho 2, a chia hết cho tích hai số
nguyên tố liên tiếp và tích 2023a là số chính phương
CMR:
a) nếu 20a + 11b chia hết cho 17 thì 83a + 38b chia hết cho17
b) nếu (2a +3b +4c) chia hết cho 7 thì ( 13a + 2b - 2c ) chia hết cho 7
a) Do 20a + 11b chia hết cho 17 => 5.(20a + 11b)
=> 100a+55b chia hết cho 17
=>(83a + 38b) + 17a + 17b chia hết cho 17
Vì 17a chia hết cho 17 với mọi a thuộc N (1)
17b chia hết cho 17 với mọi b thuộc N (2)
10.(20a+11b) chia hết cho 17 (như trên) (3)
Từ (1), (2), (3) => 83a + 38b chia hết cho 17. (tính chất chia hết của một tổng)
b) Do 2a + 3b + 4c chia hết cho 7 => 10.(2a + 3b + 4c) chia hết cho 7
=> 20a + 30b + 40c chia hết cho 7
=> (13a + 2b - 3c) + 7a + 28b + 7c chia hết cho 7
Mà 7a chia hết cho 7 với mọi a thuộc N
28b chia hết cho 7 với mọi b thuộc N
7c chia hết cho 7 với mọi c thuộc N
=> 13a + 2b -3c chia hết cho 7
Vậy...
cho a, b thuộc n* thoả mãn M=(9a+11b)*(5b+11a) chia hết cho 19 cmr M cũng chia hết cho 361
Chào em, em giải bài này như sau nhé (bài nào khó hỏi anh nha)
M chia hết cho 19 nên \(\hept{\begin{cases}9a+11b⋮19\\5b+11a⋮19\\9a+11b⋮19;11a+5b⋮19\end{cases}}\)
Đến đây ta xét 3 trường hợp:
Trường hợp 1: Cả 2 số 9a+11b và 11a+5b chia hết cho 19, khi đó M chia hết cho 19*19=361, bài toán được giải xong.
Trường hợp 2: 9a+11b chia hết cho 19, ta sẽ chứng minh 5b+11a cũng chia hết cho 19
Ta có:
\(11\left(11a+5b\right)=121a+55b=5\left(11b+9a\right)+76a\)
Nhân thấy 76a =19x4xa chia hết cho 19 và 5(11b+9a) chia hết cho 19 (theo giả thiết đang xét)
Do đó\(11\left(11a+5b\right)⋮19\Rightarrow11a+5b⋮19\)(do 11 và 19 nguyên tố cùng nhau)
Khi đó M chia hết cho 19*19=361 vì cả 9a+11b và 11a+5b đều chia hết cho 19
Trường hợp 3: 5b+11a chia hết cho 19, ta sẽ chứng minh 9a+11b chia hết cho 19
Ta có: \(11\cdot\left(9a+11b\right)=99a+121b=9\left(11a+5b\right)+76b\)
Nhân thấy 76b =19x4xb chia hết cho 19 và 9(5b+11a) chia hết cho 19 (theo giả thiết đang xét)
Do đó\(11\left(9a+11b\right)⋮19\Rightarrow9a+11b⋮19\)(do 9 và 19 nguyên tố cùng nhau)
Khi đó M chia hết cho 19*19=361 vì cả 9a+11b và 11a+5b đều chia hết cho 19
Vậy M chia hết cho 19 thì M cũng chia hết cho 361
Bài này khó nhỉ
Nghe nói bài này sẽ có trong thi
11(11a+5b) dau ra the anh
chung minh voi moij a,b thuoc z
3a+11b chia het cho 7 va 5a+b chia het cho 7
cho a,b thuoc N .chung to rang neu 5a +36 va 13a +8bcung chia het cho 2012 thi a va b cung chia het cho 12
cho a,b thuoc N .chung to rang neu 5a +36 va 13a +8bcung chia het cho 2012 thi a va b cung chia het cho 12
Voi a,b la cac so nguyen . Chung minh rang neu 4a^2+3ab-11b^2 chia het cho 5 thi a^4-b^4 chia het cho 5
A=4a^2+8ab+4b^2 - 5ab-15b^2 = 4(a+b)^2 - 5b(a+3b) ta thấy -5b(a+3b) luôn là 1 số chia hết 5
Vậy A chia hết 5 thì (a+b) cũng chia hết 5 => B = a^4-b^4 = (a^2+b^2)(a+b)(a-b) cũng chia hết 5
cho ab la so tu nhien ,chung to rang neu 5a + 3b va 13a + 8b cung chia het cho 2012 thi a va b cung chia het cho 2012.