Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ngdinhthaihoang123
Xem chi tiết
NTH
15 tháng 9 2017 lúc 12:36

mik ko biết làm nhưng bạn có thể vào câu hỏi tương tự

Huỳnh Quang Sang
11 tháng 7 2019 lúc 17:02

Ta có : \(\frac{a}{b}< \frac{a+n}{b+n}\Leftrightarrow a(b+n)< b(a+n)\)

\(\Leftrightarrow ab+an< ab+bn\Leftrightarrow a< b\)vì n > 0

Như vậy : \(\frac{a}{b}< \frac{a+n}{b+n}\Leftrightarrow a< b\)

Ta lại có : \(\frac{a}{b}>\frac{a+n}{b+n}\Leftrightarrow a(b+n)>b(a+n)\)

\(\Leftrightarrow ab+an>ab+bn\Leftrightarrow an>bn\Leftrightarrow a>b\)

Như vậy : \(\frac{a}{b}>\frac{a+n}{b+n}\Leftrightarrow a>b\)

Bi Pham
1 tháng 9 2020 lúc 21:22

Ta có:a/b=a.(b+n)

                =a.b+a.n/b.(b+n)

a+n/b+n=(a+n).b/(b+n).b

             =a.b+b.n/b.(b+n)

-->a/b<a+n/b+n

       

Khách vãng lai đã xóa
ngdinhthaihoang
Xem chi tiết
Akai Haruma
31 tháng 5 2024 lúc 0:48

Lời giải:

Xét $\frac{a}{b}-\frac{a+n}{b+n}=\frac{a(b+n)-b(a+n)}{b(b+n)}=\frac{n(a-b)}{b(b+n)}$
Nếu $a>b$ thì ${a}{b}-\frac{a+n}{b+n}=\frac{n(a-b)}{b(b+n)}>0$

$\Rightarrow {a}{b}>\frac{a+n}{b+n}$

Nếu $a=b$ thì ${a}{b}-\frac{a+n}{b+n}=\frac{n(a-b)}{b(b+n)}=0$

$\Rightarrow {a}{b}=\frac{a+n}{b+n}$

Nếu $a<b$ thì ${a}{b}-\frac{a+n}{b+n}=\frac{n(a-b)}{b(b+n)}<0$

$\Rightarrow {a}{b}<\frac{a+n}{b+n}$

 

nguyễn Thị phương vy
Xem chi tiết
HUỲNH HƯƠNG LƯU
21 tháng 6 2015 lúc 15:36

theo minh thi

neu a<b thi ta co a(b+n) va b(a+n)

       ab+an và ab + bn

vi a<b nen a(b+n)<b(a+n) suy ra a/b < a+n/b+n

neu a>b thi ta co a(b+n) va b(a+n)

      ab+an va ab+bn

vì a>b nen a(b+n)>b(a+n) suy ra a/b>a+n/b+n

neu a=b thi a(b+n) và b(a+n)

       ab+an và ab+ bn

vì a=b nên a(b+n) = b(a+n) suy ra a/b=a+n/b+n

Nguyen Thi Tuyet Ngan
19 tháng 6 2015 lúc 11:50

a bé hơn b

a+n<b+n
 

 

phạm minh anh
Xem chi tiết
Minh Triều
25 tháng 8 2015 lúc 16:09

\(\frac{a}{b}=\frac{a.\left(b+n\right)}{b.\left(b+n\right)}=\frac{a.b+a.n}{b^2+b.n}\)

\(\frac{a+n}{b+n}=\frac{b.\left(a+n\right)}{b.\left(b+n\right)}=\frac{a.b+b.n}{b^2+b.n}\)

Với a=b thì:
\(\frac{a}{b}=1;\frac{a+n}{b+n}=1\Rightarrow\frac{a}{b}=\frac{a+n}{b+n}\)

 

Với a<b thì:

\(\frac{a.b+a.n}{b^2+b.n}\frac{a+n}{b+n}\)

Nguyễn Bùi Thế Anh
Xem chi tiết
Ngô Hoàng Thanh Vân
Xem chi tiết
minh anh
25 tháng 7 2015 lúc 20:11

ta có nếu a>b thì an>bn

                        an+ab>bn+ab

                   a.(n+b)>b.(n+a)

             =>a/b > n+a/n+b

nếu a<b thì an<bn

               an+ab<bn+ab

             a.(n+b)<b.(n+a)

          => a/b < n+a/n+b

nếu a=b thì an=bn

  an+ab=bn+ab

a.(n+b)=b.(n+a)

=>a/b = n+a/n+b

nguyen minh nghia
Xem chi tiết
Trần Đức Thắng
11 tháng 7 2015 lúc 12:47

(+) Th1 : a = b 

=> \(\frac{a}{b}=1\) và \(\frac{a+n}{b+n}=1\)

=> \(\frac{a}{b}=\frac{a+n}{b+n}\)

(+) th2 : a < b 

\(\frac{a}{b}=\frac{a\left(b+n\right)}{b\left(b+n\right)}=\frac{ab+an}{b\left(b+n\right)}\)

\(\frac{a+n}{b+n}=\frac{b\left(a+n\right)}{b\left(b+n\right)}=\frac{ab+an}{b\left(b+n\right)}\)

Vì a < b và n thuộc N* => an < bn => ab + an < ab + bn => \(\frac{ab+an}{b\left(b+n\right)}

Nguyễn Tuấn Anh 6A1
26 tháng 7 2020 lúc 17:02

Ta có: a/b<a+n/b+n <=> a(b+n)<b(a+n) 

                                      <=> a.b+a.n<b.a+b.n

                                      <=> a.n<b.n

                                      <=> a<b                                                =>a/b<a+n/b+n <=> a<b

    Tương tự: a/b>a+n/b+n <=> a>b

Khách vãng lai đã xóa
ngdinhthaihoang123
Xem chi tiết
hieu minh
Xem chi tiết