Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen tung duong
Xem chi tiết
Nguyễn Chí Cường
Xem chi tiết
Hà Nguyễn
23 tháng 10 2015 lúc 20:23

555^2≡5 (mod 10)
555"^3≡5 (mod 10)
555^5=555^2.555^3≡5.5≡5 (mod 10)
~~> 555^777≡5 (mod 10)
Suy ra 
333^555^777 đồng dư với 333^5
Do 333^5=3332.3333≡3 (mod10)
Vậy chữ số tận của 333^555^777 là 3 . (1)
Làm tương tự ta được 777^555^333 có chữ số tận cùng là 7 (2)
(1) và (2)Suy ra 333^555^777 +777^555^333 có chữ số tận cùng là 0
Vậy 333^555^777 +777^555^333 chia hết cho 10.

Nguyễn Minh Trường
Xem chi tiết
Le Mai
Xem chi tiết
Le Mai
Xem chi tiết
Nguyen Kim Anh
9 tháng 4 2018 lúc 21:45

Ta có :

\(555^2\equiv5\left(mod10\right)\)

\(555^3\equiv5\left(mod10\right)\)

\(555^5=555^2\cdot555^3\equiv5\cdot5\equiv5\left(mod10\right)\)

\(\Rightarrow555^{777}\equiv5\left(mod10\right)\)

Suy ra :

\(333^{555^{777}}\) đồng dư với \(333^5\)

Do \(333^5=3332\cdot3333\equiv3\left(mod10\right)\)

Vậy chữ số tận cùng của \(333^{555^{777}}\) là 3 (1)

Tương tự : \(777^{555^{333}}\) có chữ số chữ số tận cùng là 7 (2)

Từ (1) ; (2) suy ra :

\(333^{555^{777}}\)\(+777^{555^{333}}\) có chữ số tận cùng là 0

Vậy \(333^{555^{777}+}777^{555^{333}}\) \(⋮10\)

Thiện Đạt Hoàng Nghĩa
Xem chi tiết
Tâm Trần Huy
22 tháng 3 2017 lúc 9:26

555 ^ 2 ≡ 5 (mod 10)
555 ^3≡5 (mod 10)
555^5=555^2.555^3≡5.5≡5 (mod 10)
~~> 555^777≡5 (mod 10)
Suy ra
333^555^777đồng dư với 333^5
Do 333^5=333^2.333^3≡3 (mod10)
Vậy chữ số tận của 333^555^777 là 3 . (1)
Làm tương tự ta được 777^555^333 có chữ số tận cùng là 7 (2)
(1) và (2) Suy ra 333^555^777 +777^555^333 có chữ số tận cùng là 0
Vậy 333^555^777 +777^555^333 chia hết cho 10.

zZz Cool Kid_new zZz
Xem chi tiết
shitbo
28 tháng 2 2019 lúc 14:11

\(555\equiv-1\left(\text{mod 4}\right)\Rightarrow555^{777}\equiv\left(-1\right)^{777}\left(\text{mod 4}\right)\equiv\left(-1\right)\left(\text{mod 4}\right)\)

\(\Rightarrow\text{555^777 chia 4 dư 3. }\)

\(555^{333}\equiv\left(-1\right)^{333}\left(\text{mod 4}\right)\equiv\left(-1\right)\left(\text{mod 4}\right)\)

\(\Rightarrow\text{555^333 chia 4 dư 3}\)

\(\text{Đến đây dễ rồi -__-}\)

Nguyệt
27 tháng 2 2019 lúc 21:52

Câu hỏi của ♥✪BCS★Shimaru❀ ♥ - Toán lớp 7 - Học toán với OnlineMath

nếu có cách khác cách mod jj này thì giải hộ tớ với ạ + giải thích kĩ chút nha :)) thanks!

zZz Cool Kid_new zZz
27 tháng 2 2019 lúc 21:57

hình như bài đó tớ làm sai mới nên đăng câu hỏi nhờ SP tớ:3

Le Mai
Xem chi tiết
Nga Nguyễn
10 tháng 4 2018 lúc 17:45

xét chữ số tận cùng

Nguyễn's Linh
Xem chi tiết
Nguyễn Thị Hoa
10 tháng 4 2016 lúc 20:59

(333555^777+777555^333)=...3+...7=...0

=>chia hết cho 10

Nguyễn's Linh
11 tháng 4 2016 lúc 12:55

nhưng nhỡ nó có tận cùng là 9,1 thì sao